IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.07841.html
   My bibliography  Save this paper

Predicting Insurance Penetration Rate in Ghana Using the Autoregressive Integrated Moving Average (ARIMA) Model

Author

Listed:
  • Thomas Gyima-Adu
  • Godwin Gidisu

Abstract

Ghana records a low penetration of 1.05% compared to some of its African counterparts. For example South Africa, which has an insurance penetration rate of 17%, followed by Namibia which records 6.3%. This means, there is more room for improvement. More upsetting, with Ghana hovering around the 1% as at 2018, the rate works out to the small amount of Gross Domestic Product. This research seeks to model and forecast insurance penetration rate in Ghana using the Autoregressive Integrated Moving Average technique. The result indicates that ARIMA (3,1,0) is the appropriate model for insurance penetration in Ghana. Also, results from the forecast could serve as an advisory or the need to re-strategize as a country. Therefore, determining the future pattern of insurance penetration will lead to the remedies that will increase the number of insured in the future.

Suggested Citation

  • Thomas Gyima-Adu & Godwin Gidisu, 2025. "Predicting Insurance Penetration Rate in Ghana Using the Autoregressive Integrated Moving Average (ARIMA) Model," Papers 2502.07841, arXiv.org.
  • Handle: RePEc:arx:papers:2502.07841
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.07841
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Forecasting Irish inflation using ARIMA models," Research Technical Papers 3/RT/98, Central Bank of Ireland.
    2. Arena, Marco, 2006. "Does insurance market activity promote economic growth ? Country study for industrial and developing countries," Policy Research Working Paper Series 4098, The World Bank.
    3. Shin, Yongcheol & Schmidt, Peter, 1992. "The KPSS stationarity test as a unit root test," Economics Letters, Elsevier, vol. 38(4), pages 387-392, April.
    4. Webby, Richard & O'Connor, Marcus, 1996. "Judgemental and statistical time series forecasting: a review of the literature," International Journal of Forecasting, Elsevier, vol. 12(1), pages 91-118, March.
    5. Jeeva JOSE & P. Sojan LAL, 2013. "Application of ARIMA(1,1,0) Model for Predicting Time Delay of Search Engine Crawlers," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 17(4), pages 26-38.
    6. J. David Cummins & Olivier Mahul, 2009. "Catastrophe Risk Financing in Developing Countries : Principles for Public Intervention," World Bank Publications - Books, The World Bank Group, number 6289.
    7. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    8. Odunayo Olarewaju & Thabiso Msomi, 2021. "Determinants of Insurance Penetration in West African Countries: A Panel Auto Regressive Distributed Lag Approach," JRFM, MDPI, vol. 14(8), pages 1-15, July.
    9. Samuel Asuamah Yeboah & Manu Ohene & T.B. Wereko, 2012. "Forecasting aggregate and disaggregate energy consumption using arima models: A literature survey," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 1(2), pages 1-7.
    10. Baumöhl, Eduard & Lyócsa, Štefan, 2009. "Stationarity of time series and the problem of spurious regression," MPRA Paper 27926, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
    2. Hewage, Harsha Chamara & Perera, H. Niles & De Baets, Shari, 2022. "Forecast adjustments during post-promotional periods," European Journal of Operational Research, Elsevier, vol. 300(2), pages 461-472.
    3. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    4. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    5. Zafar, Raja Fawad & Qayyum, Abdul & Ghouri, Saghir Pervaiz, 2015. "Forecasting Inflation using Functional Time Series Analysis," MPRA Paper 67208, University Library of Munich, Germany.
    6. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    7. N. Karagiannis & H. Assa & A. A. Pantelous & C. G. Turvey, 2016. "Modelling and pricing of catastrophe risk bonds with a temperature-based agricultural application," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1949-1959, December.
    8. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    9. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    10. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    11. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    12. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    13. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    15. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    16. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    17. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    18. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    19. Abdullah Ghazo, 2021. "Applying the ARIMA Model to the Process of Forecasting GDP and CPI in the Jordanian Economy," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 70-77, May.
    20. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    21. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.07841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.