Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.06.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Di Piazza, A. & Di Piazza, M.C. & La Tona, G. & Luna, M., 2021. "An artificial neural network-based forecasting model of energy-related time series for electrical grid management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 294-305.
- Giuseppe La Tona & Maria Carmela Di Piazza & Massimiliano Luna, 2021. "Effect of Daily Forecasting Frequency on Rolling-Horizon-Based EMS Reducing Electrical Demand Uncertainty in Microgrids," Energies, MDPI, vol. 14(6), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
- Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
- Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
- Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
- Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Gonca Gürses-Tran & Antonello Monti, 2022. "Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
More about this item
Keywords
Forecasting; Residential electrical consumption; Energy management; LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:63-75. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.