IDEAS home Printed from https://ideas.repec.org/p/ags/feemwp/349169.html
   My bibliography  Save this paper

Forecasting the Volatility of Energy Transition Metals

Author

Listed:
  • Bastianin, Andrea
  • Li, Xiao
  • Shamsudin, Luqman

Abstract

The transition to a cleaner energy mix, essential for achieving net-zero greenhouse gas emissions by 2050, will significantly increase demand for metals critical to renewable energy technologies. Energy Transition Metals (ETMs), including copper, lithium, nickel, cobalt, and rare earth elements, are indispensable for renewable energy generation and the electrification of global economies. However, their markets are characterized by high price volatility due to supply concentration, low substitutability, and limited price elasticity. This paper provides a comprehensive analysis of the price volatility of ETMs, a subset of Critical Raw Materials (CRMs). Using a combination of exploratory data analysis, data reduction, and visualization methods, we identify key features for accurate point and density forecasts. We evaluate various volatility models, including Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Stochastic Volatility (SV) models, to determine their forecasting performance. Our findings reveal significant heterogeneity in ETM volatility patterns, which challenge standard groupings by data providers and geological classifications. The results contribute to the literature on CRM economics and commodity volatility, offering novel insights into the complex dynamics of ETM markets and the modeling of their returns and volatilities.

Suggested Citation

  • Bastianin, Andrea & Li, Xiao & Shamsudin, Luqman, 2025. "Forecasting the Volatility of Energy Transition Metals," FEEM Working Papers 349169, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemwp:349169
    DOI: 10.22004/ag.econ.349169
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/349169/files/NDL2025-04.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.349169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bakas, Dimitrios & Triantafyllou, Athanasios, 2019. "Volatility forecasting in commodity markets using macro uncertainty," Energy Economics, Elsevier, vol. 81(C), pages 79-94.
    2. Dinh, Theu & Goutte, Stéphane & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Economic drivers of volatility and correlation in precious metal markets," Journal of Commodity Markets, Elsevier, vol. 28(C).
    3. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    4. Saadaoui, Jamel & Smyth, Russell & Vespignani, Joaquin, 2025. "Ensuring the security of the clean energy transition: Examining the impact of geopolitical risk on the price of critical minerals," Energy Economics, Elsevier, vol. 142(C).
    5. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    6. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    7. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Thibault Fally & James Sayre, 2018. "Commodity Trade Matters," 2018 Meeting Papers 172, Society for Economic Dynamics.
    10. Han, Xuyuan & Liu, Zhenya & Wang, Shixuan, 2022. "An R-vine copula analysis of non-ferrous metal futures with application in Value-at-Risk forecasting," Journal of Commodity Markets, Elsevier, vol. 25(C).
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    13. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    14. Christian Francq & Genaro Sucarrat, 2022. "Volatility Estimation When the Zero-Process is Nonstationary," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 53-66, December.
    15. Bastianin, Andrea & Casoli, Chiara & Galeotti, Marzio, 2023. "The connectedness of Energy Transition Metals," Energy Economics, Elsevier, vol. 128(C).
    16. Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020. "FFORMA: Feature-based forecast model averaging," International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
    17. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    18. Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2020. "Spillovers, integration and causality in LME non-ferrous metal markets," Journal of Commodity Markets, Elsevier, vol. 17(C).
    19. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    20. Lukas Boer & Andrea Pescatori & Martin Stuermer, 2024. "Energy Transition Metals: Bottleneck for Net-Zero Emissions?," Journal of the European Economic Association, European Economic Association, vol. 22(1), pages 200-229.
    21. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    22. Diemer, Andreas & Iammarino, Simona & Perkins, Richard & Gros, Axel, 2022. "Technology, resources and geography in a paradigm shift: the case of critical and conflict materials in ICTs," LSE Research Online Documents on Economics 115103, London School of Economics and Political Science, LSE Library.
    23. Naeem, Muhammad Abubakr & Hamouda, Foued & Karim, Sitara, 2024. "Tail risk spillover effects in commodity markets: A comparative study of crisis periods," Journal of Commodity Markets, Elsevier, vol. 33(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Bastianin & Xiao Li & Luqman Shamsudin, 2025. "Forecasting the Volatility of Energy Transition Metals," Working Papers 2025.04, Fondazione Eni Enrico Mattei.
    2. Andrea Bastianin & Xiao Li & Luqman Shamsudin, 2025. "Forecasting the Volatility of Energy Transition Metals," Papers 2501.16069, arXiv.org, revised Jan 2025.
    3. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    4. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    5. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    6. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    7. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    8. N. Antonakakis & J. Darby, 2013. "Forecasting volatility in developing countries' nominal exchange returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
    9. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    10. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    11. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    14. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.
    15. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    16. Pierluigi Vallarino, 2024. "Dynamic kernel models," Tinbergen Institute Discussion Papers 24-082/III, Tinbergen Institute.
    17. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    18. Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
    19. Andrea Bastianin & Elisabetta Mirto & Yan Qin & Luca Rossini, 2024. "What drives the European carbon market? Macroeconomic factors and forecasts," Working Papers 2024.02, Fondazione Eni Enrico Mattei.
    20. Fałdziński, Marcin & Fiszeder, Piotr & Molnár, Peter, 2024. "Improving volatility forecasts: Evidence from range-based models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).

    More about this item

    Keywords

    Climate Change; Environmental Economics and Policy; Resource/Energy Economics and Policy; Sustainability;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemwp:349169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.