IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1112-d216204.html
   My bibliography  Save this article

Distributed Reconciliation in Day-Ahead Wind Power Forecasting

Author

Listed:
  • Li Bai

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Pierre Pinson

    (Centre for Electric Power and Energy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark)

Abstract

With increasing renewable energy generation capacities connected to the power grid, a number of decision-making problems require some form of consistency in the forecasts that are being used as input. In everyday words, one expects that the sum of the power generation forecasts for a set of wind farms is equal to the forecast made directly for the power generation of that portfolio. This forecast reconciliation problem has attracted increased attention in the energy forecasting literature over the last few years. Here, we review the state of the art and its applicability to day-ahead forecasting of wind power generation, in the context of spatial reconciliation. After gathering some observations on the properties of the game-theoretical optimal projection reconciliation approach, we propose to readily rethink it in a distributed setup by using the Alternating Direction Method of Multipliers (ADMM). Three case studies are considered for illustrating the interest and performance of the approach, based on simulated data, the National Renewable Energy Labaratory (NREL) Wind Toolkit dataset, and a dataset for a number of geographically distributed wind farms in Sardinia, Italy.

Suggested Citation

  • Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1112-:d:216204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rob J. Hyndman & George Athanasopoulos, 2014. "Optimally Reconciling Forecasts in a Hierarchy," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 35, pages 42-48, Fall.
    2. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    3. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    4. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    5. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    6. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    7. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    8. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    9. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Poncela-Blanco & Pilar Poncela, 2021. "Improving Wind Power Forecasts: Combination through Multivariate Dimension Reduction Techniques," Energies, MDPI, vol. 14(5), pages 1-16, March.
    2. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    2. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
    3. Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
    4. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
    5. Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
    6. Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
    7. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    8. Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
    9. George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
    10. Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
    11. Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
    12. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    14. Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
    15. Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
    16. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    17. Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
    18. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    19. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023. "Optimal reconciliation with immutable forecasts," European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1112-:d:216204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.