Forecasting the COMEX copper spot price by means of neural networks and ARIMA models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2015.03.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
- Barry A. Goss & S. Gulay Avsar, 2013. "Simultaneity, Forecasting and Profits in London Copper Futures," Australian Economic Papers, Wiley Blackwell, vol. 52(2), pages 79-96, June.
- Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521710091, September.
- Labys, W C & Lesourd, J B & Badillo, D, 1998. "The existence of metal price cycles," Resources Policy, Elsevier, vol. 24(3), pages 147-155, September.
- Bergmeir, Christoph & Benítez, José M., 2012. "Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 46(i07).
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Ma, Weimin & Zhu, Xiaoxi & Wang, Miaomiao, 2013. "Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm," Resources Policy, Elsevier, vol. 38(4), pages 613-620.
- Cortazar, Gonzalo & Eterovic, Francisco, 2010. "Can oil prices help estimate commodity futures prices? The cases of copper and silver," Resources Policy, Elsevier, vol. 35(4), pages 283-291, December.
- Roberts, Mark C., 2009. "Duration and characteristics of metal price cycles," Resources Policy, Elsevier, vol. 34(3), pages 87-102, September.
- Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521883818.
- Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
- Ahmed A. A. Khalifa & Hong Miao & Sanjay Ramchander, 2011. "Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 55-80, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
- Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
- Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
- Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
- Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
- Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
- Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
- Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021.
"Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling,"
Resources Policy, Elsevier, vol. 74(C).
- {L}ukasz Bielak & Aleksandra Grzesiek & Joanna Janczura & Agnieszka Wy{l}oma'nska, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Papers 2107.07142, arXiv.org.
- He, Kaijian & Lu, Xingjing & Zou, Yingchao & Keung Lai, Kin, 2015. "Forecasting metal prices with a curvelet based multiscale methodology," Resources Policy, Elsevier, vol. 45(C), pages 144-150.
- Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2020. "Spillovers, integration and causality in LME non-ferrous metal markets," Journal of Commodity Markets, Elsevier, vol. 17(C).
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Atilla Aydın, 2024. "Economic Factors Affecting the Collective Bargaining Agreement Coverage Rate in Turkey: Cointegration Approach," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul Journal of Economics-Istanbul Iktisat Dergisi, vol. 0(40), pages 134-150, June.
- Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
- Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
- Alberto Humala & Gabriel Rodriguez, 2013.
"Some stylized facts of return in the foreign exchange and stock markets in Peru,"
Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(2), pages 139-158, May.
- Humala, Alberto & Rodriguez, Gabriel, 2010. "Some stylized facts of returns in the foreign exchange and stock markets in Peru," Working Papers 2010-017, Banco Central de Reserva del Perú.
- Alberto Humala & Gabriel Rodriguez, 2011. "Some Stylized Facts of Returns in the Foreign Exchange and Stock Markets in Peru," Documentos de Trabajo / Working Papers 2011-325, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Stefanescu, Razvan & Dumitriu, Ramona, 2015. "Conţinutul analizei seriilor de timp financiare [The Essentials of the Analysis of Financial Time Series]," MPRA Paper 67175, University Library of Munich, Germany.
- Joe Hirschberg & Jenny Lye, 2021. "Estimating risk premiums for regulated firms when accounting for reference-day variation and high-order moments of return volatility," Environment Systems and Decisions, Springer, vol. 41(3), pages 455-467, September.
- De Santis, Paola & Drago, Carlo, 2014. "Asimmetria del rischio sistematico dei titoli immobiliari americani: nuove evidenze econometriche [Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence]," MPRA Paper 59381, University Library of Munich, Germany.
- Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
- Mircea ASANDULUI, 2012. "On forecasting stock options volatility: evidence from London international financial futures and options exchange," Anale. Seria Stiinte Economice. Timisoara, Faculty of Economics, Tibiscus University in Timisoara, vol. 0, pages 505-511, May.
More about this item
Keywords
Neural networks; Autoregressive integrated moving average (ARIMA); Time series analysis; Copper; Price forecasting; New York Commodity Exchange (COMEX);All these keywords.
JEL classification:
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
- Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:45:y:2015:i:c:p:37-43. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.