IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v19y2018i2p331-350n8.html
   My bibliography  Save this article

Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series

Author

Listed:
  • Kosiorowski Daniel

    (Department of Statistics, Cracow University of Economics, Krakow, Poland .)

  • Mielczarek Dominik

    (AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland .)

  • Rydlewski Jerzy P.

    (AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland .)

  • Snarska Małgorzata

    (Department of Financial Markets, Cracow University of Economics, Krakow, Poland .)

Abstract

Shang and Hyndman (2017) proposed a grouped functional time series forecasting approach as a combination of individual forecasts obtained using the generalized least squares method. We modify their methodology using a generalized exponential smoothing technique for the most disaggregated functional time series in orderto obtain a more robust predictor. We discuss some properties of our proposals based on the results obtained via simulation studies and analysis of real data related to the prediction of demand for electricity in Australia in 2016.

Suggested Citation

  • Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
  • Handle: RePEc:vrs:stintr:v:19:y:2018:i:2:p:331-350:n:8
    DOI: 10.21307/stattrans-2018-019
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2018-019
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2018-019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
    2. Vakili, Kaveh & Schmitt, Eric, 2014. "Finding multivariate outliers with FastPCS," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 54-66.
    3. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    4. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    5. Davy Paindaveine & Germain Van bever, 2013. "From Depth to Local Depth: A Focus on Centrality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1105-1119, September.
    6. Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
    7. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2018. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region - A Critical Overview," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 53-73, March.
    8. Devin Didericksen & Piotr Kokoszka & Xi Zhang, 2012. "Empirical properties of forecasts with the functional autoregressive model," Computational Statistics, Springer, vol. 27(2), pages 285-298, June.
    9. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    10. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    11. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    12. Vinod, Hrishikesh D. & Lopez-de-Lacalle, Javier, 2009. "Maximum Entropy Bootstrap for Time Series: The meboot R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i05).
    13. Daniel Kosiorowski, 2014. "Functional Regression in Short-Term Prediction of Economic Time Series," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(4), pages 611-626, September.
    14. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    15. Martin Weale, 1988. "The Reconciliation of Values, Volumes and Prices in the National Accounts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 151(1), pages 211-221, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    2. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Aggregated moving functional median in robust prediction of hierarchical functional time series - an application to forecasting web portal users behaviors," Papers 1710.02669, arXiv.org, revised Jul 2018.
    3. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
    4. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2018. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region - A Critical Overview," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 53-73, March.
    5. Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    8. Luke Durell & J. Thad Scott & Douglas Nychka & Amanda S. Hering, 2023. "Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    9. Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
    10. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    11. Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
    12. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
    13. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
    14. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    15. Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
    16. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    17. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
    18. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    19. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    20. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:19:y:2018:i:2:p:331-350:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.