IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4531-d1402658.html
   My bibliography  Save this article

Advancing Spatiotemporal Pollutant Dispersion Forecasting with an Integrated Deep Learning Framework for Crucial Information Capture

Author

Listed:
  • Yuchen Wang

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Zhengshan Luo

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Yulei Kong

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Jihao Luo

    (School of Computer Science, Beijing Institute of Technology, Beijing 100081, China)

Abstract

This study addressed the limitations of traditional methods in predicting air pollution dispersion, which include restrictions in handling spatiotemporal dynamics, unbalanced feature importance, and data scarcity. To overcome these challenges, this research introduces a novel deep learning-based model, SAResNet-TCN, which integrates the strengths of a Residual Neural Network (ResNet) and a Temporal Convolutional Network (TCN). This fusion is designed to effectively capture the spatiotemporal characteristics and temporal correlations within pollutant dispersion data. The incorporation of a sparse attention (SA) mechanism further refines the model’s focus on critical information, thereby improving efficiency. Furthermore, this study employed a Time-Series Generative Adversarial Network (TimeGAN) to augment the dataset, thereby improving the generalisability of the model. In rigorous ablation and comparison experiments, the SAResNet-TCN model demonstrated significant advances in predicting pollutant dispersion patterns, including accurate predictions of concentration peaks and trends. These results were enhanced by a global sensitivity analysis (GSA) and an additive-by-addition approach, which identified the optimal combination of input variables for different scenarios by examining their impact on the model’s performance. This study also included visual representations of the maximum downwind hazardous distance (MDH-distance) for pollutants, validated against the Prairie Grass Project Release 31, with the Protective Action Criteria (PAC) and Immediately Dangerous to Life or Health (IDLH) levels serving as hazard thresholds. This comprehensive approach to contaminant dispersion prediction aims to provide an innovative and practical solution for environmental hazard prediction and management.

Suggested Citation

  • Yuchen Wang & Zhengshan Luo & Yulei Kong & Jihao Luo, 2024. "Advancing Spatiotemporal Pollutant Dispersion Forecasting with an Integrated Deep Learning Framework for Crucial Information Capture," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4531-:d:1402658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Fei Qian & Li Chen & Jun Li & Chao Ding & Xianfu Chen & Jian Wang, 2019. "Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    2. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    3. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    4. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    5. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    6. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    8. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    9. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    10. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    11. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    12. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    13. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    14. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    15. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    16. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    17. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    18. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
    19. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    20. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    21. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    22. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4531-:d:1402658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.