IDEAS home Printed from https://ideas.repec.org/a/spr/eurpop/v37y2021i1d10.1007_s10680-020-09559-9.html
   My bibliography  Save this article

Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity

Author

Listed:
  • Ahbab Mohammad Fazle Rabbi

    (University of Padua)

  • Stefano Mazzuco

    (University of Padua)

Abstract

Reliable mortality forecasts are an essential component of healthcare policies in ageing societies. The Lee–Carter method and its later variants are widely accepted probabilistic approaches to mortality forecasting, due to their simplicity and the straightforward interpretation of the model parameters. This model assumes an invariant age component and linear time component for forecasting. We apply the Lee–Carter method on smoothed mortality rates obtained by LASSO-type regularization and hence adjust the time component with the observed lifespan disparity. Smoothing with LASSO produces less error during the fitting period than do spline-based smoothing techniques. As a more informative indicator of longevity, matching with lifespan disparity makes the time component more reflective of mortality improvements. The forecasts produced by the new method were more accurate during out-of-sample evaluation and provided optimistic forecasts for many low-mortality countries.

Suggested Citation

  • Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
  • Handle: RePEc:spr:eurpop:v:37:y:2021:i:1:d:10.1007_s10680-020-09559-9
    DOI: 10.1007/s10680-020-09559-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10680-020-09559-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10680-020-09559-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280, April.
    2. Vladimir Shkolnikov & Evgeny Andreev & Zhen Zhang & James Oeppen & James Vaupel, 2011. "Losses of Expected Lifetime in the United States and Other Developed Countries: Methods and Empirical Analyses," Demography, Springer;Population Association of America (PAA), vol. 48(1), pages 211-239, February.
    3. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    4. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    5. Ugofilippo Basellini & Carlo Giovanni Camarda, 2019. "Modelling and forecasting adult age-at-death distributions," Population Studies, Taylor & Francis Journals, vol. 73(1), pages 119-138, January.
    6. John Wilmoth & Shiro Horiuchi, 1999. "Rectangularization revisited: Variability of age at death within human populations," Demography, Springer;Population Association of America (PAA), vol. 36(4), pages 475-495, November.
    7. Smits, Jeroen & Monden, Christiaan, 2009. "Length of life inequality around the globe," Social Science & Medicine, Elsevier, vol. 68(6), pages 1114-1123, March.
    8. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    9. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    10. Camarda, Carlo G., 2012. "MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i01).
    11. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    12. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    13. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    14. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    15. Renshaw, A. E. & Haberman, S., 2000. "Modelling the recent time trends in UK permanent health insurance recovery, mortality and claim inception transition intensities," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 365-396, December.
    16. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    17. James Vaupel & Vladimir Romo, 2003. "Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday," Demography, Springer;Population Association of America (PAA), vol. 40(2), pages 201-216, May.
    18. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    19. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    20. Shripad Tuljapurkar & Ryan Edwards, 2011. "Variance in death and its implications for modeling and forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(21), pages 497-526.
    21. Zhen Zhang & James W. Vaupel, 2009. "The age separating early deaths from late deaths," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 20(29), pages 721-730.
    22. Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
    23. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    24. Zhen Zhang & James W. Vaupel, 2009. "The age separating early deaths from late deaths," MPIDR Working Papers WP-2009-004, Max Planck Institute for Demographic Research, Rostock, Germany.
    25. José Manuel Aburto & Alyson van Raalte, 2018. "Lifespan Dispersion in Times of Life Expectancy Fluctuation: The Case of Central and Eastern Europe," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2071-2096, December.
    26. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    2. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    3. Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
    4. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    6. Aburto, José Manuel & Basellini, Ugofilippo & Baudisch, Annette & Villavicencio, Francisco, 2022. "Drewnowski’s index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Theoretical Population Biology, Elsevier, vol. 148(C), pages 1-10.
    7. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    8. Aburto, José Manuel & Kristensen, Frederikke Frehr & Sharp, Paul, 2021. "Black-white disparities during an epidemic: Life expectancy and lifespan disparity in the US, 1980–2000," Economics & Human Biology, Elsevier, vol. 40(C).
    9. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    10. Jos'e Manuel Aburto & Ugofilippo Basellini & Annette Baudisch & Francisco Villavicencio, 2021. "Drewnowski's index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Papers 2111.11256, arXiv.org.
    11. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    12. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    13. José M. Aburto & Alyson A. van Raalte, 2017. "Lifespan dispersion in times of life expectancy fluctuation: the case of Central and Eastern Europe," MPIDR Working Papers WP-2017-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    14. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    15. Péter Vékás, 2020. "Rotation of the age pattern of mortality improvements in the European Union," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1031-1048, September.
    16. Jose Manuel Aburto & Jesús-Adrián Alvarez & Francisco Villavicencio & James W. Vaupel, 2019. "The threshold age of the lifetable entropy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(4), pages 83-102.
    17. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    18. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    19. José Manuel Aburto & Alyson van Raalte, 2018. "Lifespan Dispersion in Times of Life Expectancy Fluctuation: The Case of Central and Eastern Europe," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2071-2096, December.
    20. Henrik Brønnum-Hansen & Juan Carlos Albizu-Campos Espiñeira & Camila Perera & Ingelise Andersen, 2023. "Trends in mortality patterns in two countries with different welfare models: comparisons between Cuba and Denmark 1955–2020," Journal of Population Research, Springer, vol. 40(2), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurpop:v:37:y:2021:i:1:d:10.1007_s10680-020-09559-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.