IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v064c02.html
   My bibliography  Save this article

SDD: An R Package for Serial Dependence Diagrams

Author

Listed:
  • Bagnato, Luca
  • De Capitani, Lucio
  • Mazza, Angelo
  • Punzo, Antonio

Abstract

Detecting and measuring lag-dependencies is very important in time-series analysis. This study is commonly carried out by focusing on the linear lag-dependencies via the well-known autocorrelogram. However, in practice, there are many situations in which the autocorrelogram fails because of the nonlinear structure of the serial dependence. To cope with this problem, in this paper the R package SDD is introduced. Among the available approaches to analyze the lag-dependencies in an omnibus way, the SDD package considers the autodependogram and some of its variants. The autodependogram, defined by computing the classical Pearson χ2 -statistic at various lags, is a graphical device recently proposed in the literature to analyze lag-dependencies. The concept of reproducibility probability, and several density-based measures of divergence, are considered to define the variants of the autodependogram. An application to daily returns of the Swiss Market Index is also presented to exemplify the use of the package.

Suggested Citation

  • Bagnato, Luca & De Capitani, Lucio & Mazza, Angelo & Punzo, Antonio, 2015. "SDD: An R Package for Serial Dependence Diagrams," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(c02).
  • Handle: RePEc:jss:jstsof:v:064:c02
    DOI: http://hdl.handle.net/10.18637/jss.v064.c02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v064c02/v64c02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v064c02/SDD_1.2.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v064c02/v64c02.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v064.c02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. De Martini, Daniele, 2008. "Reproducibility probability estimation for testing statistical hypotheses," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1056-1061, July.
    3. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    4. Luca Bagnato & Antonio Punzo & Orietta Nicolis, 2012. "The autodependogram: a graphical device to investigate serial dependences," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 233-254, March.
    5. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    6. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Detecting serial dependencies with the reproducibility probability autodependogram," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 35-61, January.
    7. De Capitani, L. & De Martini, D., 2011. "On stochastic orderings of the Wilcoxon Rank Sum test statistic--With applications to reproducibility probability estimation testing," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 937-946, August.
    8. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Bagnato & L. De Capitani & A. Punzo, 2016. "The Kullback–Leibler autodependogram," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2574-2594, October.
    2. Lucio De Capitani & Daniele De Martini, 2021. "Improving reproducibility probability estimation and preserving RP-testing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 49-77, March.
    3. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2018. "Testing for Serial Independence: Beyond the Portmanteau Approach," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 219-238, July.
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2017. "A diagram to detect serial dependencies: an application to transport time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 581-594, March.
    5. Simone Giannerini & Greta Goracci, 2023. "Entropy-Based Tests for Complex Dependence in Economic and Financial Time Series with the R Package tseriesEntropy," Mathematics, MDPI, vol. 11(3), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Detecting serial dependencies with the reproducibility probability autodependogram," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 35-61, January.
    2. L. Bagnato & L. De Capitani & A. Punzo, 2016. "The Kullback–Leibler autodependogram," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2574-2594, October.
    3. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2017. "A diagram to detect serial dependencies: an application to transport time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 581-594, March.
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    5. Lucio De Capitani & Daniele De Martini, 2021. "Improving reproducibility probability estimation and preserving RP-testing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 49-77, March.
    6. Dimitris Christopoulos & Peter McAdam & Elias Tzavalis, 2023. "Exploring Okun's law asymmetry: An endogenous threshold logistic smooth transition regression approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 123-158, February.
    7. Cees Diks & Valentyn Panchenko, 2005. "Nonparametric Tests for Serial Independence Based on Quadratic Forms," Tinbergen Institute Discussion Papers 05-076/1, Tinbergen Institute.
    8. Mazza, Angelo & Punzo, Antonio, 2014. "DBKGrad: An R Package for Mortality Rates Graduation by Discrete Beta Kernel Techniques," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(c02).
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    10. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    11. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    12. repec:ebl:ecbull:v:6:y:2004:i:4:p:1-8 is not listed on IDEAS
    13. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    14. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    15. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    16. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    17. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    18. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    19. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    20. Sellin, Peter, 1998. "Monetary Policy and the Stock Market: Theory and Empirical Evidence," Working Paper Series 72, Sveriges Riksbank (Central Bank of Sweden).
    21. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:064:c02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.