Causal Effect Estimation with Global Probabilistic Forecasting: A Case Study of the Impact of Covid-19 Lockdowns on Energy Demand
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022.
"How effective is carbon pricing?—A machine learning approach to policy evaluation,"
Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
- Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2021. "How effective is carbon pricing? A machine learning approach to policy evaluation," ZEW Discussion Papers 21-039, ZEW - Leibniz Centre for European Economic Research.
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
- Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
- Aurelia Rybak & Aleksandra Rybak, 2021. "The Impact of the COVID-19 Pandemic on Gaseous and Solid Air Pollutants Concentrations and Emissions in the EU, with Particular Emphasis on Poland," Energies, MDPI, vol. 14(11), pages 1-25, June.
- Ettore Bompard & Carmelo Mosca & Pietro Colella & Georgios Antonopoulos & Gianluca Fulli & Marcelo Masera & Marta Poncela-Blanco & Silvia Vitiello, 2020. "The Immediate Impacts of COVID-19 on European Electricity Systems: A First Assessment and Lessons Learned," Energies, MDPI, vol. 14(1), pages 1-22, December.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021.
"Principles and algorithms for forecasting groups of time series: Locality and globality,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
- Pablo Montero-Manso & Rob J Hyndman, 2020. "Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality," Monash Econometrics and Business Statistics Working Papers 45/20, Monash University, Department of Econometrics and Business Statistics.
- García, Sebastián & Parejo, Antonio & Personal, Enrique & Ignacio Guerrero, Juan & Biscarri, Félix & León, Carlos, 2021. "A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level," Applied Energy, Elsevier, vol. 287(C).
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
- Graf, Christoph & Quaglia, Federico & Wolak, Frank A., 2021. "(Machine) learning from the COVID-19 lockdown about electricity market performance with a large share of renewables," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
- Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018.
"ArCo: An artificial counterfactual approach for high-dimensional panel time-series data,"
Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
- Carlos Viana de Carvalho & Ricardo Masini & Marcelo Cunha Medeiros, 2016. "ARCO: an artificial counterfactual approach for high-dimensional panel time-series data," Textos para discussão 653, Department of Economics PUC-Rio (Brazil).
- Carvalho, Carlos Viana de & Masini, Ricardo Pereira & Medeiros, Marcelo C., 2017. "Arco: an artificial counterfactual approach for high-dimensional panel time-series data," Textos para discussão 454, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Fiona Burlig & Christopher Knittel & David Rapson & Mar Reguant & Catherine Wolfram, 2020.
"Machine Learning from Schools about Energy Efficiency,"
Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(6), pages 1181-1217.
- Fiona Burlig & Christopher Knittel & David Rapson & Mar Reguant & Catherine Wolfram, 2017. "Machine Learning from Schools about Energy Efficiency," NBER Working Papers 23908, National Bureau of Economic Research, Inc.
- Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021.
"Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment,"
Papers
2106.00788, arXiv.org.
- Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," LISER Working Paper Series 2021-07, Luxembourg Institute of Socio-Economic Research (LISER).
- Poulos, Jason & Albanese, Andrea & Mercatanti, Andrea & Li, Fan, 2021. "Retrospective Causal Inference via Matrix Completion, with an Evaluation of the Effect of European Integration on Cross-Border Employment," IZA Discussion Papers 14472, Institute of Labor Economics (IZA).
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021.
"An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers CWP62/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2017. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Papers 1712.09089, arXiv.org, revised May 2021.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers 62/17, Institute for Fiscal Studies.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," University of California at San Diego, Economics Working Paper Series qt90m9d66s, Department of Economics, UC San Diego.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Bruno Ferman, 2021.
"On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
- Bruno Ferman, 2019. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Papers 1906.06665, arXiv.org, revised May 2020.
- Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2022.
"Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 574-590, April.
- Jianqing Fan & Ricardo P. Masini & Marcelo C. Medeiros, 2020. "Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction," Papers 2011.03996, arXiv.org, revised Jan 2022.
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
- Carlos Viana de Carvalho & Ricardo Masini & Marcelo Cunha Medeiros, 2016.
"The perils of Counterfactual Analysis with Integrated Processes,"
Textos para discussão
654, Department of Economics PUC-Rio (Brazil).
- Carvalho, Carlos Viana de & Masini, Ricardo Pereira & Medeiros, Marcelo C., 2017. "The perils of counterfactual analysis with integrated processes," Textos para discussão 455, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Dasgupta, Kabir & Mason, Brenden J., 2020.
"The effect of interest rate caps on bankruptcy: Synthetic control evidence from recent payday lending bans,"
Journal of Banking & Finance, Elsevier, vol. 119(C).
- Kabir Dasgupta & Brenden J. Mason, 2019. "The Effect of Interest Rate Caps on Bankruptcy: Synthetic Control Evidence from Recent Payday Lending Bans," Working Papers 2019-04, Auckland University of Technology, Department of Economics.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021.
"Synthetic Difference-in-Differences,"
American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference In Differences," NBER Working Papers 25532, National Bureau of Economic Research, Inc.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference in Differences," Working Papers wp2019_1907, CEMFI.
- Bruno Ferman & Cristine Pinto, 2021.
"Synthetic controls with imperfect pretreatment fit,"
Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
- Bruno Ferman & Cristine Pinto, 2019. "Synthetic Controls with Imperfect Pre-Treatment Fit," Papers 1911.08521, arXiv.org, revised Jan 2021.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
- Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
- repec:ags:aaea22:335710 is not listed on IDEAS
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2020. "Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method," IREA Working Papers 202005, University of Barcelona, Research Institute of Applied Economics, revised Apr 2020.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2022-10-17 (Energy Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.08885. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.