IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-22-00135.html
   My bibliography  Save this article

Are unit root tests useful for univariate time series forecasts with different orders of integration? A Monte Carlo study

Author

Listed:
  • Adam J. Check

    (U.S. Bank)

  • Ming Chien Lo

    (Metropolitan State University)

  • Kwok Ping Tsang

    (Virginia Tech)

Abstract

In this paper, we consider univariate forecasts made when using stationary, near unit root, and unit root data. Like Diebold and Kilian (2000), we conduct a Monte Carlo experiment investigating the usefulness of unit root tests prior to forming univariate forecasts. In our experiment, we consider more than one unit root test and also vary the order of integration in the time series. We find that unit root tests are indeed useful for forecasting, especially when the series has a large number of in-sample observations. However, the choice of unit test matters. Using root mean square error as a criterion for forecast performance, we find that the Philips-Perron test has an edge over the augmented Dickey-Fuller test and the Kwiatkowski–Phillips–Schmidt–Shin test. We recommend practitioners to be mindful of the choice of test, as the KPSS test is the default used in the forecast package in R, following Hyndman and Khandakar (2008), but the Philips-Perron test is available as an option in that package.

Suggested Citation

  • Adam J. Check & Ming Chien Lo & Kwok Ping Tsang, 2023. "Are unit root tests useful for univariate time series forecasts with different orders of integration? A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 43(1), pages 203-244.
  • Handle: RePEc:ebl:ecbull:eb-22-00135
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2023/Volume43/EB-23-V43-I1-P18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    3. Efstathios Paparoditis & Dimitris N. Politis, 2018. "The asymptotic size and power of the augmented Dickey–Fuller test for a unit root," Econometric Reviews, Taylor & Francis Journals, vol. 37(9), pages 955-973, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    5. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    6. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    7. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    8. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    9. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    10. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    11. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    12. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    13. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    14. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720.
    15. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    16. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    17. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    18. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    19. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    20. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.

    More about this item

    Keywords

    Augmented Dickey-Fuller; KPSS; Philips-Perron; Forecasting Algorithm; Monte Carlo; Unit Root Test;
    All these keywords.

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-22-00135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.