Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Collins, Dw, 1976. "Predicting Earnings With Sub-Entity Data - Some Further Evidence," Journal of Accounting Research, Wiley Blackwell, vol. 14(1), pages 163-177.
- Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
- Svitlana Volkova & Ellyn Ayton & Katherine Porterfield & Courtney D Corley, 2017. "Forecasting influenza-like illness dynamics for military populations using neural networks and social media," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
- Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
- Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
- Dangerfield, Byron J. & Morris, John S., 1992. "Top-down or bottom-up: Aggregate versus disaggregate extrapolations," International Journal of Forecasting, Elsevier, vol. 8(2), pages 233-241, October.
- Yufang Wang & Kuai Xu & Yun Kang & Haiyan Wang & Feng Wang & Adrian Avram, 2020. "Regional Influenza Prediction with Sampling Twitter Data and PDE Model," IJERPH, MDPI, vol. 17(3), pages 1-12, January.
- Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
- Tiao, G. C. & Guttman, Irwin, 1980. "Forecasting contemporal aggregates of multiple time series," Journal of Econometrics, Elsevier, vol. 12(2), pages 219-230, February.
- Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016.
"Fast computation of reconciled forecasts for hierarchical and grouped time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
- Rob J Hyndman & Alan Lee & Earo Wang, 2014. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Monash Econometrics and Business Statistics Working Papers 17/14, Monash University, Department of Econometrics and Business Statistics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chien-Lung Chan & Chi-Chang Chang, 2020. "Big Data, Decision Models, and Public Health," IJERPH, MDPI, vol. 17(18), pages 1-7, September.
- Chien-Lung Chan & Chi-Chang Chang, 2022. "Big Data, Decision Models, and Public Health," IJERPH, MDPI, vol. 19(14), pages 1-9, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
- Sbrana, Giacomo & Silvestrini, Andrea, 2013.
"Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework,"
International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
- Giacomo Sbrana & Andrea Silvestrini, 2013. "Forecasting aggregate demand: analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," Temi di discussione (Economic working papers) 929, Bank of Italy, Economic Research and International Relations Area.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Widiarta, Handik & Viswanathan, S. & Piplani, Rajesh, 2009. "Forecasting aggregate demand: An analytical evaluation of top-down versus bottom-up forecasting in a production planning framework," International Journal of Production Economics, Elsevier, vol. 118(1), pages 87-94, March.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Zhang, Keyi & Gençay, Ramazan & Ege Yazgan, M., 2017. "Application of wavelet decomposition in time-series forecasting," Economics Letters, Elsevier, vol. 158(C), pages 41-46.
- Brüggemann, Ralf & Lütkepohl, Helmut, 2013.
"Forecasting contemporaneous aggregates with stochastic aggregation weights,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
- Ralf Brueggemann & Helmut Luetkepohl, 2011. "Forecasting Contemporaneous Aggregates with Stochastic Aggregation Weights," Economics Working Papers ECO2011/17, European University Institute.
- Ralf Brüggemann & Helmut Lütkepohl, 2011. "Forecasting Contemporaneous Aggregates with Stochastic Aggregation Weights," Working Paper Series of the Department of Economics, University of Konstanz 2011-23, Department of Economics, University of Konstanz.
- Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
- Nijman, Theo E & Palm, Franz C, 1990.
"Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
- Nijman, T.E. & Palm, F.C., 1987. "Predictive accuracy gain from disaggregate sampling in ARIMA-models," Research Memorandum FEW 273, Tilburg University, School of Economics and Management.
- Nijman, T.E. & Palm, F.C., 1990. "Predictive accuracy gain from disaggregate sampling in ARIMA models," Other publications TiSEM 50a68aea-1b30-497d-b111-6, Tilburg University, School of Economics and Management.
- Francisco Dias & Maximiano Pinheiro & António Rua, 2018. "A bottom-up approach for forecasting GDP in a data-rich environment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
- Dées, Stéphane & Güntner, Jochen, 2014.
"Analysing and forecasting price dynamics across euro area countries and sectors: a panel VAR approach,"
Working Paper Series
1724, European Central Bank.
- Stéphane Dées & Jochen Güntner, 2014. "Analysing and forecasting price dynamics across euro area countries and sectors: A panel VAR approach," Economics working papers 2014-10, Department of Economics, Johannes Kepler University Linz, Austria.
- Helmut Lütkepohl, 2010.
"Forecasting Aggregated Time Series Variables: A Survey,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
- Helmut Luetkepohl, 2009. "Forecasting Aggregated Time Series Variables: A Survey," Economics Working Papers ECO2009/17, European University Institute.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Hubrich, Kirstin, 2005.
"Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?,"
International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
- Hubrich, Kirstin, 2003. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Working Paper Series 247, European Central Bank.
- Kirstin Hubrich, 2004. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Computing in Economics and Finance 2004 230, Society for Computational Economics.
- Colin Bermingham & Antonello D’Agostino, 2014.
"Understanding and forecasting aggregate and disaggregate price dynamics,"
Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
- D'Agostino, Antonello & Bermingham, Colin, 2010. "Understanding and Forecasting Aggregate and Disaggregate Price Dynamics," Research Technical Papers 8/RT/10, Central Bank of Ireland.
- Bermingham, Colin & D'Agostino, Antonello, 2011. "Understanding and forecasting aggregate and disaggregate price dynamics," Working Paper Series 1365, European Central Bank.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
More about this item
Keywords
public health; influenza outpatient visits; hierarchical structure; forecasting; decision tree;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4743-:d:379164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.