K-nearest neighbors for GEFCom2014 probabilistic wind power forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2015.11.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mangalova, E. & Agafonov, E., 2014. "Wind power forecasting using the k-nearest neighbors algorithm," International Journal of Forecasting, Elsevier, vol. 30(2), pages 402-406.
- Hong, Tao & Pinson, Pierre & Fan, Shu, 2014.
"Global Energy Forecasting Competition 2012,"
International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
- Tao Hong & Pierre Pinson & Shu Fan, 2013. "Global Energy Forecasting Competition 2012," HSC Research Reports HSC/13/16, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Monika Zielińska-Sitkiewicz & Mariola Chrzanowska & Konrad Furmańczyk & Kacper Paczutkowski, 2021. "Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks," Energies, MDPI, vol. 14(20), pages 1-21, October.
- Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
- Liu, Yin & Davanloo Tajbakhsh, Sam & Conejo, Antonio J., 2021. "Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 812-824.
- Ma, Long & Huang, Ling & Shi, Huifeng, 2023. "A novel spatial–temporal generative autoencoder for wind speed uncertainty forecasting," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yao & Wang, Jianxue, 2016. "K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1074-1080.
- Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Nagy, Gábor I. & Barta, Gergő & Kazi, Sándor & Borbély, Gyula & Simon, Gábor, 2016. "GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1087-1093.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
- Severinsen, A. & Myrland, Ø., 2022. "Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
- Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
- Santiago Moreno-Carbonell & Eugenio F. Sánchez-Úbeda & Antonio Muñoz, 2020. "Time Series Decomposition of the Daily Outdoor Air Temperature in Europe for Long-Term Energy Forecasting in the Context of Climate Change," Energies, MDPI, vol. 13(7), pages 1-28, March.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Nowotarski, Jakub & Weron, Rafał, 2016.
"On the importance of the long-term seasonal component in day-ahead electricity price forecasting,"
Energy Economics, Elsevier, vol. 57(C), pages 228-235.
- Jakub Nowotarski & Rafal Weron, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," HSC Research Reports HSC/16/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016.
"Improving short term load forecast accuracy via combining sister forecasts,"
Energy, Elsevier, vol. 98(C), pages 40-49.
- Jakub Nowotarski & Bidong Liu & Rafal Weron & Tao Hong, 2015. "Improving short term load forecast accuracy via combining sister forecasts," HSC Research Reports HSC/15/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Saxena, Harshit & Aponte, Omar & McConky, Katie T., 2019. "A hybrid machine learning model for forecasting a billing period’s peak electric load days," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1288-1303.
- Xie, Jingrui & Hong, Tao, 2016. "GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1012-1016.
- Gergo Barta & Benedek Pasztor & Venkat Prava, 2021. "Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction," Energies, MDPI, vol. 14(22), pages 1-18, November.
- Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
- Jingrui Xie & Tao Hong, 2017. "Wind Speed for Load Forecasting Models," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
More about this item
Keywords
Probabilistic forecasting; Nonparametric smoothing; Quantile estimation; Distance metric; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:32:y:2016:i:3:p:1067-1073. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.