Demand Forecasting of Individual Probability Density Functions with Machine Learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s43069-021-00079-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Matteo Grigoletto, 1998. "Bootstrap prediction intervals for autoregressive models fitted to non-autoregressive processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 7(3), pages 285-295, December.
- Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
- David C. Schmittlein & Albert C. Bemmaor & Donald G. Morrison, 1985. "Technical Note—Why Does the NBD Model Work? Robustness in Representing Product Purchases, Brand Purchases and Imperfectly Recorded Purchases," Marketing Science, INFORMS, vol. 4(3), pages 255-266.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005.
"Bootstrap prediction intervals for power-transformed time series,"
International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
- Pascual, Lorenzo, 2001. "Bootstrap prediction intervals for power-transformed time series," DES - Working Papers. Statistics and Econometrics. WS ws010503, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004.
"Bootstrap predictive inference for ARIMA processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
- Pascual, Lorenzo, 1999. "Bootstrap Predictive Inference for Arima Processes," DES - Working Papers. Statistics and Econometrics. WS 6283, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001.
"Effects of parameter estimation on prediction densities: a bootstrap approach,"
International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
- Pascual, Lorenzo, 1999. "Effects of parameter estimation on prediction densities a bootstrap approach," DES - Working Papers. Statistics and Econometrics. WS 6304, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
- A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
- Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
- Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
- Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
- Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
- Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
- A. S. C. Ehrenberg, 1959. "The Pattern of Consumer Purchases," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 8(1), pages 26-41, March.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- G. W. Morrison & D. H. Pike, 1977. "Kalman Filtering Applied to Statistical Forecasting," Management Science, INFORMS, vol. 23(7), pages 768-774, March.
- Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
- Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
- Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
- Afshin Oroojlooyjadid & Lawrence V. Snyder & Martin Takáč, 2020. "Applying deep learning to the newsvendor problem," IISE Transactions, Taylor & Francis Journals, vol. 52(4), pages 444-463, April.
- Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
- Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
- Kris Johnson Ferreira & Bin Hong Alex Lee & David Simchi-Levi, 2016. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 69-88, February.
- Diebold, Francis X & West, Kenneth D, 1998. "Symposium on Forecasting and Empirical Methods in Macroeconomics and Finance: Editors' Introduction," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 811-815, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bisheng He & Yongjun Zhu & Andrea D’Ariano & Keyu Wen & Lufeng Chen, 2023. "Dynamic Relational Graph Convolutional Network for Metro Passenger Flow Forecasting," SN Operations Research Forum, Springer, vol. 4(4), pages 1-27, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
- Chan, W.S & Cheung, S.H & Wu, K.H, 2004. "Multiple forecasts with autoregressive time series models: case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 421-430.
- Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Ahmed, Wajid Shakeel & Sheikh, Jibran & Ur-Rehman, Kashif & Shafi, khuram & Shad, Shafqat Ali & Butt, Faisal Shafique, 2020. "New continuum of stochastic static forecasting model for mutual funds at investment policy level," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
- Helmut Lütkepohl, 2013.
"Vector autoregressive models,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164,
Edward Elgar Publishing.
- Helmut Luetkepohl, 2011. "Vector Autoregressive Models," Economics Working Papers ECO2011/30, European University Institute.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005.
"Bootstrap prediction intervals for power-transformed time series,"
International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
- Pascual, Lorenzo, 2001. "Bootstrap prediction intervals for power-transformed time series," DES - Working Papers. Statistics and Econometrics. WS ws010503, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
- Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
- Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
- Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
- Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
- Thais de Castro Moraes & Jiancheng Qin & Xue-Ming Yuan & Ek Peng Chew, 2023. "Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions," Logistics, MDPI, vol. 7(4), pages 1-18, November.
- Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
- Olivares-Nadal, Alba V., 2024. "Constructing decision rules for multiproduct newsvendors: An integrated estimation-and-optimization framework," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1021-1037.
- Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003.
"On SETAR non-linearity and forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
- Clements, M.P. & Franses, Ph.H.B.F. & Smith, J., 1999. "On SETAR non- linearity and forecasting," Econometric Institute Research Papers EI 9914-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
Explainable machine learning; Retail demand forecasting; Probability distribution; Temporal confounding;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:2:y:2021:i:3:d:10.1007_s43069-021-00079-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.