IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1410-1420.html
   My bibliography  Save this article

Forecasting emergency department occupancy with advanced machine learning models and multivariable input

Author

Listed:
  • Tuominen, Jalmari
  • Pulkkinen, Eetu
  • Peltonen, Jaakko
  • Kanniainen, Juho
  • Oksala, Niku
  • Palomäki, Ari
  • Roine, Antti

Abstract

Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality. Forecasting future service demand has the potential to improve patient outcomes. Despite active research on the subject, proposed forecasting models have become outdated, due to the quick influx of advanced machine learning models and because the amount of multivariable input data has been limited. In this study, we document the performance of a set of advanced machine learning models in forecasting ED occupancy 24 h ahead. We use electronic health record data from a large, combined ED with an extensive set of explanatory variables, including the availability of beds in catchment area hospitals, traffic data from local observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT, and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The inclusion of the explanatory variables enhances the performance of TFT and DeepAR but fails to significantly improve the performance of LightGBM. To the best of our knowledge, this is the first study to extensively document the superiority of machine learning over statistical benchmarks in the context of ED forecasting.

Suggested Citation

  • Tuominen, Jalmari & Pulkkinen, Eetu & Peltonen, Jaakko & Kanniainen, Juho & Oksala, Niku & Palomäki, Ari & Roine, Antti, 2024. "Forecasting emergency department occupancy with advanced machine learning models and multivariable input," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1410-1420.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1410-1420
    DOI: 10.1016/j.ijforecast.2023.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023001346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    2. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    3. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    4. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    5. Julia Eriksson & Linda Gellerstedt & Pernilla Hillerås & Åsa G Craftman, 2018. "Registered nurses’ perceptions of safe care in overcrowded emergency departments," Journal of Clinical Nursing, John Wiley & Sons, vol. 27(5-6), pages 1061-1067, March.
    6. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    7. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    8. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    9. Muhammet Gul & Erkan Celik, 2020. "An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments," Health Systems, Taylor & Francis Journals, vol. 9(4), pages 263-284, October.
    10. Koning, Alex J. & Franses, Philip Hans & Hibon, Michele & Stekler, H.O., 2005. "The M3 competition: Statistical tests of the results," International Journal of Forecasting, Elsevier, vol. 21(3), pages 397-409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    3. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    4. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    5. Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
    6. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    7. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    8. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    9. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    10. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
    13. Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
    14. Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
    15. Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
    16. Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
    17. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
    18. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    19. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    20. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1410-1420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.