IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p923-d77896.html
   My bibliography  Save this article

Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods

Author

Listed:
  • Cristiana Tudor

    (International Business and Economics Department, Bucharest University of Economics, Bucharest 010374, Romania)

Abstract

The 2012 Doha meeting established the continuation of the Kyoto protocol, the legally-binding global agreement under which signatory countries had agreed to reduce their carbon emissions. Contrary to this assumed obligation, all G20 countries with the exception of France and the UK saw significant increases in their CO 2 emissions over the last 25 years, surpassing 300% in the case of China. This paper attempts to forecast the evolution of carbon dioxide emissions in Bahrain over the 2012–2021 decade by employing seven Automated Forecasting Methods, including the exponential smoothing state space model (ETS), the Holt–Winters Model, the BATS/TBATS model, ARIMA, the structural time series model (STS), the naive model, and the neural network time series forecasting method (NNAR). Results indicate a reversal of the current decreasing trend of pollution in the country, with a point estimate of 2309 metric tons per capita at the end of 2020 and 2317 at the end of 2021, as compared to the 1934 level achieved in 2010. The country’s baseline level corresponding to year 1990 (as specified by the Doha amendment of the Kyoto protocol) is approximately 25.54 metric tons per capita, which implies a maximum level of 20.96 metric tons per capita for the year 2020 (corresponding to a decrease of 18% relative to the baseline level) in order for Bahrain to comply with the protocol. Our results therefore suggest that Bahrain cannot meet its assumed target.

Suggested Citation

  • Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:923-:d:77896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petris, Giovanni & Petrone, Sonia, 2011. "State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i04).
    2. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    3. Julien Chevallier, 2009. "Energy risk management with carbon assets," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 32(4), pages 328-349.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Kuan-Min Wang, 2013. "The relationship between carbon dioxide emissions and economic growth: quantile panel-type analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1337-1366, April.
    7. Dorel Paraschiv & Cristiana Tudor & Radu Petrariu, 2015. "The Textile Industry and Sustainable Development: A Holt–Winters Forecasting Investigation for the Eastern European Area," Sustainability, MDPI, vol. 7(2), pages 1-12, January.
    8. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    9. Cristiana Tudor, 2011. "Changes in Stock Markets Interdependencies as a Result of the Global Financial Crisis: Empirical Investigation on the CEE Region," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 58(4), pages 525-543, December.
    10. repec:dau:papers:123456789/4206 is not listed on IDEAS
    11. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aysha Malik & Ejaz Hussain & Sofia Baig & Muhammad Fahim Khokhar, 2020. "Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan Economic Corridor," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 380-389, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    2. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    5. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    6. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    7. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    8. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    9. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
    11. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    12. Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
    13. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    14. Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017. "Visualising forecasting algorithm performance using time series instance spaces," International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
    15. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    16. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    17. Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016. "Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
    18. Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
    19. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    20. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:923-:d:77896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.