Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1007263
Download full text from publisher
References listed on IDEAS
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
- Koyama, Shinsuke & Castellanos Pérez-Bolde, Lucia & Shalizi, Cosma Rohilla & Kass, Robert E., 2010. "Approximate Methods for State-Space Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 170-180.
- Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
- Emili Balaguer-Ballester & Christopher C Lapish & Jeremy K Seamans & Daniel Durstewitz, 2011. "Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
- Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
- Paolo Maranzano & Alessandro Fassò & Matteo Pelagatti & Manfred Mudelsee, 2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Michael D. Hunter & Haya Fatimah & Marina A. Bornovalova, 2022. "Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 477-505, June.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
- François R. Velde, 2009.
"Chronicle of a Deflation Unforetold,"
Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
- Francois R. Velde, 2006. "Chronicles of a deflation unforetold," Working Paper Series WP-06-12, Federal Reserve Bank of Chicago.
- Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Alejandro Rodriguez & Esther Ruiz, 2009.
"Bootstrap prediction intervals in state–space models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
- Rodríguez, Alejandro, 2008. "Bootstrap prediction intervals in State Space models," DES - Working Papers. Statistics and Econometrics. WS ws081104, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
- Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017.
"Bayesian estimation of agent-based models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
- Jakob Grazzini & Matteo Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," Economics Papers 2015-W12, Economics Group, Nuffield College, University of Oxford.
- Jakob Grazzini & Matteo G. Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," LABORatorio R. Revelli Working Papers Series 145, LABORatorio R. Revelli, Centre for Employment Studies.
- Jean-Luc Gaffard, 2014.
"Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre,"
Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
- Jean-Luc Gaffard, 2012. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," SciencePo Working papers Main hal-01070291, HAL.
- Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," SciencePo Working papers Main halshs-00931247, HAL.
- Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Post-Print halshs-00931247, HAL.
- Jean Luc Gaffard, 2012. "Crise de la theorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Documents de Travail de l'OFCE 2012-10, Observatoire Francais des Conjonctures Economiques (OFCE).
- Jean-Luc Gaffard, 2012. "Crise de la théorie et crise de la politique économique : des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Working Papers hal-01070291, HAL.
- Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
- Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Tommaso Proietti, 2002.
"Some Reflections on Trend-Cycle Decompositions with Correlated Components,"
Econometrics
0209002, University Library of Munich, Germany.
- Tommaso PROIETTI, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Economics Working Papers ECO2002/23, European University Institute.
- Tobias Hartl & Roland Jucknewitz, 2022.
"Approximate state space modelling of unobserved fractional components,"
Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
- Tobias Hartl & Roland Weigand, 2018. "Approximate State Space Modelling of Unobserved Fractional Components," Papers 1812.09142, arXiv.org, revised May 2020.
- Broto Carmen & Ruiz Esther, 2009.
"Testing for Conditional Heteroscedasticity in the Components of Inflation,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
- Carmen Broto & Esther Ruiz, 2008. "Testing for conditional heteroscedasticity in the components of inflation," Working Papers 0812, Banco de España.
- Marczak, Martyna & Proietti, Tommaso, 2016.
"Outlier detection in structural time series models: The indicator saturation approach,"
International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
- Martyna Marczak & Tommaso Proietti, 2014. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," CREATES Research Papers 2014-20, Department of Economics and Business Economics, Aarhus University.
- Marczak, Martyna & Proietti, Tommaso, 2015. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113137, Verein für Socialpolitik / German Economic Association.
- Marczak, Martyna & Proietti, Tommaso, 2014. "Outlier detection in structural time series models: The indicator saturation approach," FZID Discussion Papers 90-2014, University of Hohenheim, Center for Research on Innovation and Services (FZID).
- Martyna Marczak & Tommaso Proietti, 2014. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," CEIS Research Paper 325, Tor Vergata University, CEIS, revised 08 Aug 2014.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007263. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.