IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v14y2012i1d10.1007_s11009-011-9225-z.html
   My bibliography  Save this article

The Stratified Sampling Bootstrap for Measuring the Uncertainty in Mortality Forecasts

Author

Listed:
  • Valeria D’Amato

    (University of Salerno)

  • Steven Haberman

    (City University)

  • Maria Russolillo

    (University of Salerno)

Abstract

In this paper, we propose a procedure for reducing the uncertainty in mortality projections, on the basis of a log bilinear Poisson Lee Carter model (Renshaw and Haberman Appl Stat 52:119–137, 2003a). In the literature, because the non-linear nature of the quantities under consideration has prevented analytical solutions, simulation techniques have been used in order to provide prediction intervals for forecasted quantities (for example, Brouhns et al. Scand Actuar J 3:212–224, 2005, Renshaw and Haberman Insur Math Econ 42:797–816, 2008). In this respect, we adopt the bootstrap simulation approach in order to measure the uncertainty affecting mortality projections. In particular, we propose making the bootstrap procedure more efficient by using a specific variance reducing technique, the so-called Stratified Sampling technique. To this end, we propose a two stage simulation bootstrap procedure where variance reducing techniques are combined with the simple bootstrap of the Poisson Lee Carter version. Numerical applications are shown using the results for some datasets.

Suggested Citation

  • Valeria D’Amato & Steven Haberman & Maria Russolillo, 2012. "The Stratified Sampling Bootstrap for Measuring the Uncertainty in Mortality Forecasts," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 135-148, March.
  • Handle: RePEc:spr:metcap:v:14:y:2012:i:1:d:10.1007_s11009-011-9225-z
    DOI: 10.1007/s11009-011-9225-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-011-9225-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-011-9225-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    2. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    3. Willets, R. C., 2004. "The Cohort Effect: Insights and Explanations," British Actuarial Journal, Cambridge University Press, vol. 10(4), pages 833-877, October.
    4. Melnikov, Alexander & Romaniuk, Yulia, 2006. "Evaluating the performance of Gompertz, Makeham and Lee-Carter mortality models for risk management with unit-linked contracts," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 310-329, December.
    5. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    6. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    7. Pitacco, Ermanno & Denuit, Michel & Haberman, Steven & Olivieri, Annamaria, 2009. "Modelling Longevity Dynamics for Pensions and Annuity Business," OUP Catalogue, Oxford University Press, number 9780199547272.
    8. Hoedemakers, Tom & Beirlant, Jan & Goovaerts, Marc J. & Dhaene, Jan, 2003. "Confidence bounds for discounted loss reserves," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 297-316, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Mohtadi & Bryan S. Weber, 2021. "Catastrophe And Rational Policy: Case Of National Security," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 140-161, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    2. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    3. Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo, 2014. "Computational framework for longevity risk management," Computational Management Science, Springer, vol. 11(1), pages 111-137, January.
    4. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    5. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    6. Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010. "Longevity Risk," De Economist, Springer, vol. 158(2), pages 151-192, June.
    7. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    8. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    9. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    10. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    11. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    12. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    13. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    14. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    15. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    16. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    17. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    18. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    19. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    20. Christiansen, Marcus C. & Niemeyer, Andreas & Teigiszerová, Lucia, 2015. "Modeling and forecasting duration-dependent mortality rates," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 65-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:14:y:2012:i:1:d:10.1007_s11009-011-9225-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.