Conformal prediction bands for multivariate functional data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2021.104879
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
- Agostino Torti & Alessia Pini & Simone Vantini, 2021. "Modelling time‐varying mobility flows using function‐on‐function regression: Analysis of a bike sharing system in the city of Milan," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 226-247, January.
- López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
- Hyunphil Choi & Matthew Reimherr, 2018. "A geometric approach to confidence regions and bands for functional parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 239-260, January.
- Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Guanqun Cao & Lijian Yang & David Todem, 2012. "Simultaneous inference for the mean function based on dense functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 359-377.
- Wooldridge, Jeffrey M, 1994. "A Simple Specification Test for the Predictive Ability of Transformation Models," The Review of Economics and Statistics, MIT Press, vol. 76(1), pages 59-65, February.
- Jing Lei & Max G’Sell & Alessandro Rinaldo & Ryan J. Tibshirani & Larry Wasserman, 2018. "Distribution-Free Predictive Inference for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1094-1111, July.
- Ferraty, Frédéric & Vieu, Philippe, 2009. "Additive prediction and boosting for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1400-1413, February.
- Matteo Fontana & Gianluca Zeni & Simone Vantini, 2020. "Conformal Prediction: a Unified Review of Theory and New Challenges," Papers 2005.07972, arXiv.org, revised Jul 2022.
- Naveen N. Narisetty & Vijayan N. Nair, 2016. "Extremal Depth for Functional Data and Applications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1705-1714, October.
- Jing Lei & James Robins & Larry Wasserman, 2013. "Distribution-Free Prediction Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 278-287, March.
- J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," LSE Research Online Documents on Economics 120774, London School of Economics and Political Science, LSE Library.
- Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
- Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
- Zhou, Xinyu & Ma, Yijia & Wu, Wei, 2023. "Statistical depth for point process via the isometric log-ratio transformation," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Johan Debayle & Vesna Gotovac Ðogaš & Kateřina Helisová & Jakub Staněk & Markéta Zikmundová, 2021. "Assessing Similarity of Random sets via Skeletons," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 471-490, June.
- Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
- Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019.
"Distributional conformal prediction,"
Papers
1909.07889, arXiv.org, revised Aug 2021.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "Distributional conformal prediction," University of California at San Diego, Economics Working Paper Series qt2zs6m5p5, Department of Economics, UC San Diego.
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022.
"K-expectiles clustering,"
Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang, 2021. "K-expectiles clustering," IRTG 1792 Discussion Papers 2021-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
- Cristian F. Jiménez‐Varón & Fouzi Harrou & Ying Sun, 2024. "Pointwise data depth for univariate and multivariate functional outlier detection," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
- Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
- Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022.
"Seasonal functional autoregressive models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019. "Seasonal Functional Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 16/19, Monash University, Department of Econometrics and Business Statistics.
- Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
- Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
More about this item
Keywords
Conformal Prediction; Distribution-free prediction set; Exact prediction set; Finite-sample prediction set; Functional data; Prediction band;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001573. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.