Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
- E. B. Iversen & J. M. Morales & J. K. Møller & H. Madsen, 2014. "Probabilistic forecasts of solar irradiance using stochastic differential equations," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 152-164, May.
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731, September.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, October.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
- Tao Hong, 2014.
"Energy Forecasting: Past, Present, and Future,"
Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
- Tao Hong, 2013. "Energy forecasting: Past, present and future," HSC Research Reports HSC/13/15, Hugo Steinhaus Center, Wroclaw University of Technology.
- Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Mustafa Jaihuni & Jayanta Kumar Basak & Fawad Khan & Frank Gyan Okyere & Elanchezhian Arulmozhi & Anil Bhujel & Jihoon Park & Lee Deog Hyun & Hyeon Tae Kim, 2020. "A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms," Energies, MDPI, vol. 13(2), pages 1-20, January.
- Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2022. "Probabilistic Peak Demand Estimation Using Members of the Clayton Generalized Gamma Copula Family," Energies, MDPI, vol. 15(16), pages 1-15, August.
- Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
- Takuji Matsumoto & Yuji Yamada, 2021. "Comprehensive and Comparative Analysis of GAM-Based PV Power Forecasting Models Using Multidimensional Tensor Product Splines against Machine Learning Techniques," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Promphak Dawan & Kobsak Sriprapha & Songkiate Kittisontirak & Terapong Boonraksa & Nitikorn Junhuathon & Wisut Titiroongruang & Surasak Niemcharoen, 2020. "Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model," Energies, MDPI, vol. 13(2), pages 1-18, January.
- Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang & Happy Aprillia & Che-Yuan Hsu & Jie-Lun Zhong & Nguyễn H. Phương, 2021. "Stacking Ensemble Method with the RNN Meta-Learner for Short-Term PV Power Forecasting," Energies, MDPI, vol. 14(16), pages 1-23, August.
- Seungbeom Nam & Jin Hur, 2018. "Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2017. "Recent Advances in Energy Time Series Forecasting," Energies, MDPI, vol. 10(6), pages 1-3, June.
- Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
- María Del Carmen Ruiz-Abellón & Antonio Gabaldón & Antonio Guillamón, 2018. "Load Forecasting for a Campus University Using Ensemble Methods Based on Regression Trees," Energies, MDPI, vol. 11(8), pages 1-22, August.
- Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Technology.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
- Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
- David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
- González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
- Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Maciejowska, Katarzyna & Nowotarski, Jakub, 2016.
"A hybrid model for GEFCom2014 probabilistic electricity price forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.
- Katarzyna Maciejowska & Jakub Nowotarski, 2015. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," HSC Research Reports HSC/15/06, Hugo Steinhaus Center, Wroclaw University of Technology.
- Heinonen, Sirkka & Minkkinen, Matti & Karjalainen, Joni & Inayatullah, Sohail, 2017. "Testing transformative energy scenarios through causal layered analysis gaming," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 101-113.
- Tao Hong & Katarzyna Maciejowska & Jakub Nowotarski & Rafal Weron, 2014. "Probabilistic load forecasting via Quantile Regression Averaging of independent expert forecasts," HSC Research Reports HSC/14/10, Hugo Steinhaus Center, Wroclaw University of Technology.
- Maciejowska, Katarzyna & Nowotarski, Jakub & Weron, Rafał, 2016.
"Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 957-965.
- Katarzyna Maciejowska & Jakub Nowotarski & Rafal Weron, 2014. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging," HSC Research Reports HSC/14/09, Hugo Steinhaus Center, Wroclaw University of Technology.
- Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
- Javier Huertas Tato & Miguel Centeno Brito, 2018. "Using Smart Persistence and Random Forests to Predict Photovoltaic Energy Production," Energies, MDPI, vol. 12(1), pages 1-12, December.
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020.
"Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
- Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2018. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," HSC Research Reports HSC/18/05, Hugo Steinhaus Center, Wroclaw University of Technology.
- van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
- Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016.
"Improving short term load forecast accuracy via combining sister forecasts,"
Energy, Elsevier, vol. 98(C), pages 40-49.
- Jakub Nowotarski & Bidong Liu & Rafal Weron & Tao Hong, 2015. "Improving short term load forecast accuracy via combining sister forecasts," HSC Research Reports HSC/15/05, Hugo Steinhaus Center, Wroclaw University of Technology.
More about this item
Keywords
solar power; probabilistic forecasting; regression; machine learning; ensemble models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1017-:d:84169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.