IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v292y2021ics0306261921003603.html
   My bibliography  Save this article

Heat load forecasting using adaptive temporal hierarchies

Author

Listed:
  • Bergsteinsson, Hjörleifur G.
  • Møller, Jan Kloppenborg
  • Nystrup, Peter
  • Pálsson, Ólafur Pétur
  • Guericke, Daniela
  • Madsen, Henrik

Abstract

Heat load forecasts are crucial for energy operators in order to optimize the energy production at district heating plants for the coming hours. Furthermore, forecasts of heat load are needed for optimized control of the district heating network since a lower temperature reduces the heat loss, but the required heat supply at the end-users puts a lower limit on the temperature level. Consequently, improving the accuracy of heat load forecasts leads to savings and reduced heat loss by enabling improved control of the network and an optimized production schedule at the plant. This paper proposes the use of temporal hierarchies to enhance the accuracy of heat load forecasts in district heating. Usually, forecasts are only made at the temporal aggregation level that is the most important for the system. However, forecasts for multiple aggregation levels can be reconciled and lead to more accurate forecasts at essentially all aggregation levels. Here it is important that the auto- and cross-covariance between forecast errors at the different aggregation levels are taken into account. This paper suggests a novel framework using temporal hierarchies and adaptive estimation to improve heat load forecast accuracy by optimally combining forecasts from multiple aggregation levels using a reconciliation process. The weights for the reconciliation are computed using an adaptively estimated covariance matrix with a full structure, enabling the process to share time-varying information both within and between aggregation levels. The case study shows that the proposed framework improves the heat load forecast accuracy by 15% compared to commercial state-of-the-art operational forecasts.

Suggested Citation

  • Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003603
    DOI: 10.1016/j.apenergy.2021.116872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    2. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    3. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    4. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    5. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    6. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    7. Rasmussen, Lisa Buth & Bacher, Peder & Madsen, Henrik & Nielsen, Henrik Aalborg & Heerup, Christian & Green, Torben, 2016. "Load forecasting of supermarket refrigeration," Applied Energy, Elsevier, vol. 163(C), pages 32-40.
    8. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    9. Dominković, Dominik Franjo & Junker, Rune Grønborg & Lindberg, Karen Byskov & Madsen, Henrik, 2020. "Implementing flexibility into energy planning models: Soft-linking of a high-level energy planning model and a short-term operational model," Applied Energy, Elsevier, vol. 260(C).
    10. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    11. Ignacio Blanco & Daniela Guericke & Anders N. Andersen & Henrik Madsen, 2018. "Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production," Energies, MDPI, vol. 11(12), pages 1-26, November.
    12. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    13. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
    14. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    15. Nystrup, Peter & Lindström, Erik & Pinson, Pierre & Madsen, Henrik, 2020. "Temporal hierarchies with autocorrelation for load forecasting," European Journal of Operational Research, Elsevier, vol. 280(3), pages 876-888.
    16. Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
    17. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    18. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    19. Daniela Guericke & Ignacio Blanco & Juan M. Morales & Henrik Madsen, 2020. "A two-phase stochastic programming approach to biomass supply planning for combined heat and power plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 863-900, December.
    20. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
    21. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    22. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yaohui & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng & Liu, Hanjing & Fu, Yonggang, 2023. "Explainable district heat load forecasting with active deep learning," Applied Energy, Elsevier, vol. 350(C).
    2. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    3. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    4. Binglin Li & Yong Shao & Yufeng Lian & Pai Li & Qiang Lei, 2023. "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-14, August.
    5. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    6. Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
    7. Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
    8. Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    2. Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
    3. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
    6. Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023. "Optimal reconciliation with immutable forecasts," European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
    7. Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    8. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    9. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
    11. Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
    12. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    13. Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
    14. Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
    15. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
    17. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    18. Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
    19. Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
    20. Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.