Basket data-driven approach for omnichannel demand forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijpe.2022.108748
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gary M. Koop, 2013.
"Forecasting with Medium and Large Bayesian VARS,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
- Gary Koop, 2010. "Forecasting with Medium and Large Bayesian VARs," Working Paper series 43_10, Rimini Centre for Economic Analysis.
- Koop, Gary, 2011. "Forecasting with Medium and Large Bayesian VARs," SIRE Discussion Papers 2011-38, Scottish Institute for Research in Economics (SIRE).
- Gary Koop, 2011. "Forecasting with Medium and Large Bayesian VARs," Working Papers 1117, University of Strathclyde Business School, Department of Economics.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
- Zied Babai, Mohamed & Syntetos, Aris & Teunter, Ruud, 2014. "Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence," International Journal of Production Economics, Elsevier, vol. 157(C), pages 212-219.
- Turrini, Laura & Meissner, Joern, 2019. "Spare parts inventory management: New evidence from distribution fitting," European Journal of Operational Research, Elsevier, vol. 273(1), pages 118-130.
- Santiago Gallino & Antonio Moreno, 2014. "Integration of Online and Offline Channels in Retail: The Impact of Sharing Reliable Inventory Availability Information," Management Science, INFORMS, vol. 60(6), pages 1434-1451, June.
- Ailawadi, Kusum L. & Farris, Paul W., 2017. "Managing Multi- and Omni-Channel Distribution: Metrics and Research Directions," Journal of Retailing, Elsevier, vol. 93(1), pages 120-135.
- Ma, Yu & Seetharaman, P.B. & Narasimhan, Chakravarthi, 2012. "Modeling Dependencies in Brand Choice Outcomes Across Complementary Categories," Journal of Retailing, Elsevier, vol. 88(1), pages 47-62.
- Cai, Ya-Jun & Lo, Chris K.Y., 2020. "Omni-channel management in the new retailing era: A systematic review and future research agenda," International Journal of Production Economics, Elsevier, vol. 229(C).
- Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
- Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
- Sushil Punia & Konstantinos Nikolopoulos & Surya Prakash Singh & Jitendra K. Madaan & Konstantia Litsiou, 2020. "Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4964-4979, July.
- Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
- Rita Gamberini & Francesco Lolli & Bianca Rimini & Fabio Sgarbossa, 2010. "Forecasting of Sporadic Demand Patterns with Seasonality and Trend Components: An Empirical Comparison between Holt-Winters and (S)ARIMA Methods," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-14, July.
- Rob J. Hyndman & Lydia Shenstone, 2005.
"Stochastic models underlying Croston's method for intermittent demand forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
- Lydia Shenstone & Rob J. Hyndman, 2003. "Stochastic models underlying Croston's method for intermittent demand forecasting," Monash Econometrics and Business Statistics Working Papers 1/03, Monash University, Department of Econometrics and Business Statistics.
- Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
- Arslan, Ayşe N. & Klibi, Walid & Montreuil, Benoit, 2021. "Distribution network deployment for omnichannel retailing," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1042-1058.
- Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Ivan Svetunkov & Fotios Petropoulos, 2018. "Old dog, new tricks: a modelling view of simple moving averages," International Journal of Production Research, Taylor & Francis Journals, vol. 56(18), pages 6034-6047, September.
- Syntetos, A.A. & Babai, M.Z. & Davies, J. & Stephenson, D., 2010. "Forecasting and stock control: A study in a wholesaling context," International Journal of Production Economics, Elsevier, vol. 127(1), pages 103-111, September.
- Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- Hasni, M. & Aguir, M.S. & Babai, M.Z. & Jemai, Z., 2019. "On the performance of adjusted bootstrapping methods for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 216(C), pages 145-153.
- Van der Auweraer, Sarah & Boute, Robert, 2019. "Forecasting spare part demand using service maintenance information," International Journal of Production Economics, Elsevier, vol. 213(C), pages 138-149.
- Gérard P. Cachon & A. Gürhan Kök, 2007. "Category Management and Coordination in Retail Assortment Planning in the Presence of Basket Shopping Consumers," Management Science, INFORMS, vol. 53(6), pages 934-951, June.
- R H Teunter & L Duncan, 2009. "Forecasting intermittent demand: a comparative study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 321-329, March.
- Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
- David R. Bell & Santiago Gallino & Antonio Moreno, 2018. "Offline Showrooms in Omnichannel Retail: Demand and Operational Benefits," Management Science, INFORMS, vol. 64(4), pages 1629-1651, April.
- Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Sebastian Steinker & Kai Hoberg & Ulrich W. Thonemann, 2017. "The Value of Weather Information for E-Commerce Operations," Production and Operations Management, Production and Operations Management Society, vol. 26(10), pages 1854-1874, October.
- Bayram, Armagan & Cesaret, Bahriye, 2021. "Order fulfillment policies for ship-from-store implementation in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 294(3), pages 987-1002.
- Alexander Hübner & Andreas Holzapfel & Heinrich Kuhn, 2016. "Distribution systems in omni-channel retailing," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 255-296, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
- Hamid Ahaggach & Lylia Abrouk & Eric Lebon, 2024. "Systematic Mapping Study of Sales Forecasting: Methods, Trends, and Future Directions," Forecasting, MDPI, vol. 6(3), pages 1-31, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
- Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
- Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
- Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
- Hübner, Alexander & Hense, Jonas & Dethlefs, Christian, 2022. "The revival of retail stores via omnichannel operations: A literature review and research framework," European Journal of Operational Research, Elsevier, vol. 302(3), pages 799-818.
- Babai, M.Z. & Chen, H. & Syntetos, A.A. & Lengu, D., 2021. "A compound-Poisson Bayesian approach for spare parts inventory forecasting," International Journal of Production Economics, Elsevier, vol. 232(C).
- Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
- Ducharme, Corey & Agard, Bruno & Trépanier, Martin, 2021. "Forecasting a customer's Next Time Under Safety Stock," International Journal of Production Economics, Elsevier, vol. 234(C).
- Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
- Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
More about this item
Keywords
Omnichannel retailing; Demand forecasting; Shopping basket; Network analysis; Inventory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:257:y:2023:i:c:s0925527322003309. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.