IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124016859.html
   My bibliography  Save this article

Quantifying the value of probabilistic forecasts when trading renewable hybrid power parks in day-ahead markets: A Nordic case study

Author

Listed:
  • Lindberg, O.
  • Zhu, R.
  • Widén, J.

Abstract

Renewable hybrid power parks (HPPs) that combine wind power, solar photovoltaic (PV) power and storage have emerged as promising electricity generation resources. However, HPPs face operational challenges due to the uncertainty in power production and electricity prices, which is why probabilistic forecasts that capture the uncertainty associated with forecast errors have gained attention. While the research community has proposed several methods to improve the accuracy of probabilistic forecasts, the question on how these forecasts can improve decision-making over deterministic forecasts is rarely quantified. This study assesses the value of probabilistic forecasts and analyze the improvement compared to deterministic forecasts in day-ahead markets. The value is quantified using almost two years of data from an operational HPP in Sweden. Results show that: (i) high grid connection capacities leverage the value of probabilistic models, (ii) a deterministic model is preferable for parks with a ratio of battery energy capacity to installed nominal power of the renewable power park equal to 0.6 MWh/MW, (iii) a probabilistic model allows utilizing the energy storage more effectively by reducing the energy throughput of the battery with 61%–87%, and (iv) a probabilistic model increases the unit profit when the forecast errors of the regulating price are higher than the spot price, (v) a simple probabilistic benchmark model, which is worse in terms of forecast accuracy, increases the unit profit compared to the analyzed deterministic models, and (vi) the more advanced probabilistic model analyzed in this study does not provide a significant improvement over a simple probabilistic benchmark model.

Suggested Citation

  • Lindberg, O. & Zhu, R. & Widén, J., 2024. "Quantifying the value of probabilistic forecasts when trading renewable hybrid power parks in day-ahead markets: A Nordic case study," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016859
    DOI: 10.1016/j.renene.2024.121617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    2. Yuwei Wang & Huiru Zhao & Peng Li, 2019. "Optimal Offering and Operating Strategies for Wind-Storage System Participating in Spot Electricity Markets with Progressive Stochastic-Robust Hybrid Optimization Model Series," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, July.
    3. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    4. Camal, S. & Teng, F. & Michiorri, A. & Kariniotakis, G. & Badesa, L., 2019. "Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications," Applied Energy, Elsevier, vol. 242(C), pages 1396-1406.
    5. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    6. van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).
    7. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2021. "The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case," Applied Energy, Elsevier, vol. 283(C).
    8. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md., 2018. "A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market," Applied Energy, Elsevier, vol. 232(C), pages 341-357.
    9. Al-Lawati, Razan A.H. & Crespo-Vazquez, Jose L. & Faiz, Tasnim Ibn & Fang, Xin & Noor-E-Alam, Md., 2021. "Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market," Applied Energy, Elsevier, vol. 292(C).
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    12. Le Gal La Salle, Josselin & Badosa, Jordi & David, Mathieu & Pinson, Pierre & Lauret, Philippe, 2020. "Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts," Renewable Energy, Elsevier, vol. 162(C), pages 1321-1339.
    13. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, April.
    14. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    2. Visser, L.R. & AlSkaif, T.A. & Khurram, A. & Kleissl, J. & van Sark, W.G.H.J.M., 2024. "Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy," Applied Energy, Elsevier, vol. 370(C).
    3. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    5. Wang, Wei & Feng, Bin & Huang, Gang & Guo, Chuangxin & Liao, Wenlong & Chen, Zhe, 2023. "Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction," Applied Energy, Elsevier, vol. 333(C).
    6. Lauret, Philippe & Alonso-Suárez, Rodrigo & Amaro e Silva, Rodrigo & Boland, John & David, Mathieu & Herzberg, Wiebke & Le Gall La Salle, Josselin & Lorenz, Elke & Visser, Lennard & van Sark, Wilfried, 2024. "The added value of combining solar irradiance data and forecasts: A probabilistic benchmarking exercise," Renewable Energy, Elsevier, vol. 237(PB).
    7. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    8. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    9. Rujie Zhu & Kaushik Das & Poul Ejnar Sørensen & Anca Daniela Hansen, 2023. "Optimal Participation of Co-Located Wind–Battery Plants in Sequential Electricity Markets," Energies, MDPI, vol. 16(15), pages 1-17, July.
    10. Chapaloglou, Spyridon & Varagnolo, Damiano & Marra, Francesco & Tedeschi, Elisabetta, 2022. "Data-driven energy management of isolated power systems under rapidly varying operating conditions," Applied Energy, Elsevier, vol. 314(C).
    11. Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
    12. Fatemi, Seyyed A. & Kuh, Anthony & Fripp, Matthias, 2018. "Parametric methods for probabilistic forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 129(PA), pages 666-676.
    13. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    14. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    15. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    16. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    17. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    18. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    19. Haben, Stephen & Giasemidis, Georgios, 2016. "A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1017-1022.
    20. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.