IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v25y2019i3p448-468.html
   My bibliography  Save this article

Hot topics and emerging trends in tourism forecasting research: A scientometric review

Author

Listed:
  • Han Liu

    (Jilin University, China)

  • Ying Liu

    (Jilin University, China)

  • Yonglian Wang

    (Jilin University of Finance and Economics, China)

  • Changchun Pan

    (Jilin University, China)

Abstract

Tourism forecasting has been a focal point of tourism research over the past few decades as a result of the corresponding rapid development and expansion of the tourism industry. A bibliometric analysis, based on 543 articles retrieved from the Web of Science Core Collection database, was carried out to provide insights into hot topics as well as emerging trends in tourism forecasting research. The results show that the research outputs related to tourism forecasting have grown rapidly since 2006. The observed hot topics in tourism forecasting were to predict tourism demand via various models, including time series models, econometric models, and artificial intelligence-based methods, and to compare the forecasting accuracy of models. An emerging trend of tourism forecasting is to use methods based on data from a web-based search engine. Our study provides insights and valuable information for researchers to identify new perspectives on hot topics and research frontiers.

Suggested Citation

  • Han Liu & Ying Liu & Yonglian Wang & Changchun Pan, 2019. "Hot topics and emerging trends in tourism forecasting research: A scientometric review," Tourism Economics, , vol. 25(3), pages 448-468, May.
  • Handle: RePEc:sae:toueco:v:25:y:2019:i:3:p:448-468
    DOI: 10.1177/1354816618810564
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1354816618810564
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1354816618810564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    3. M.J. Cobo & A.G. López‐Herrera & E. Herrera‐Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    4. Song, Haiyan & Witt, Stephen F. & Jensen, Thomas C., 2003. "Tourism forecasting: accuracy of alternative econometric models," International Journal of Forecasting, Elsevier, vol. 19(1), pages 123-141.
    5. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    6. Lindsay W. Turner & Stephen F. Witt, 2001. "Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models," Tourism Economics, , vol. 7(2), pages 135-147, June.
    7. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    8. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    9. Kulendran, N. & King, Maxwell L., 1997. "Forecasting international quarterly tourist flows using error-correction and time-series models," International Journal of Forecasting, Elsevier, vol. 13(3), pages 319-327, September.
    10. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    11. Xuerong Li & Han Qiao & Shouyang Wang, 2017. "Exploring evolution and emerging trends in business model study: a co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 869-887, May.
    12. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    13. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    14. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    15. Song, Haiyan & Hyndman, Rob J., 2011. "Tourism forecasting: An introduction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 817-821, July.
    16. Yuqing Fang, 2015. "Visualizing the structure and the evolving of digital medicine: a scientometrics review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 5-21, October.
    17. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    18. Christine Lim, 1997. "An Econometric Classification and Review of International Tourism Demand Models," Tourism Economics, , vol. 3(1), pages 69-81, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Miguel López-Bonilla & María del Carmen Reyes-Rodríguez & Jesús Manuel López-Bonilla, 2020. "Golf Tourism and Sustainability: Content Analysis and Directions for Future Research," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    2. Vicky Zampeta & Gregory Chondrokoukis, 2023. "Maritime Transportation Accidents: A Bibliometric Analysis," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 16(1), pages 19-26, October.
    3. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    4. Jianbo Zhao & Huailiang Liu & Shanzhuang Zhang & Yanwei Qi & Haiping Dong & Xiaojin Zhang & Weili Zhang, 2023. "Advancements in Rumor Detection Research Based on Bibliometrics and S-curve Technology Evolution Theory," SAGE Open, , vol. 13(4), pages 21582440231, December.
    5. Myriam González-Limon & Asuncion Rodríguez-Ramos Isabel Novo-Corti, 2022. "Minimun Wage: A Bibliometric Analysis of this Research Topic," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 401-417.
    6. Wei Wang & Dechao Ma & Fengzhi Wu & Mengxin Sun & Shuangqing Xu & Qiuyue Hua & Ziyuan Sun, 2023. "Exploring the Knowledge Structure and Hotspot Evolution of Greenwashing: A Visual Analysis Based on Bibliometrics," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    7. Xin Zhao, 2022. "Customer Orientation: A Literature Review Based on Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440221, February.
    8. Yuruixian Zhang & Wei Chong Choo & Yuhanis Abdul Aziz & Choy Leong Yee & Jen Sim Ho, 2022. "Go Wild for a While? A Bibliometric Analysis of Two Themes in Tourism Demand Forecasting from 1980 to 2021: Current Status and Development," Data, MDPI, vol. 7(8), pages 1-38, July.
    9. Jessica Bollenbach & Stefan Neubig & Andreas Hein & Robert Keller & Helmut Krcmar, 2024. "Enabling active visitor management: local, short-term occupancy prediction at a touristic point of interest," Information Technology & Tourism, Springer, vol. 26(3), pages 521-552, September.
    10. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
    11. P. V. Thayyib & Rajesh Mamilla & Mohsin Khan & Humaira Fatima & Mohd Asim & Imran Anwar & M. K. Shamsudheen & Mohd Asif Khan, 2023. "State-of-the-Art of Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary," Sustainability, MDPI, vol. 15(5), pages 1-38, February.
    12. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
    13. Jaume Rosselló Nadal & María Santana Gallego, 2022. "Gravity models for tourism demand modeling: Empirical review and outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 36(5), pages 1358-1409, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    2. Hugo Baier-Fuentes & José M. Merigó & José Ernesto Amorós & Magaly Gaviria-Marín, 2019. "International entrepreneurship: a bibliometric overview," International Entrepreneurship and Management Journal, Springer, vol. 15(2), pages 385-429, June.
    3. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.
    4. Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
    5. Zheng-Dong Li & Bei Zhang, 2023. "Family-friendly policy evolution: a bibliometric study," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    6. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    7. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    8. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    9. Mehdi Amirkhani & Igor Martek & Mark B. Luther, 2021. "Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review," Energies, MDPI, vol. 14(19), pages 1-18, September.
    10. Davidescu, Adriana AnaMaria & Petcu, Monica Aureliana & Curea, Stefania Cristina & Manta, Eduard Mihai, 2022. "Two faces of the same coin: Exploring the multilateral perspective of informality in relation to Sustainable Development Goals based on bibliometric analysis," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 683-705.
    11. Maximilian Scheffler & Johannes Brunzel, 2020. "Destructive leadership in organizational research: a bibliometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 755-775, October.
    12. Fan, Yangliu & Lehmann, Sune & Blok, Anders, 2022. "Extracting the interdisciplinary specialty structures in social media data-based research: A clustering-based network approach," Journal of Informetrics, Elsevier, vol. 16(3).
    13. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
    14. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    15. Pedro López-Rubio & Norat Roig-Tierno & Alicia Mas-Tur, 2020. "Regional innovation system research trends: toward knowledge management and entrepreneurial ecosystems," International Journal of Quality Innovation, Springer, vol. 6(1), pages 1-16, December.
    16. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    17. Modak, Nikunja M. & Merigó, José M. & Weber, Richard & Manzor, Felipe & Ortúzar, Juan de Dios, 2019. "Fifty years of Transportation Research journals: A bibliometric overview," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 188-223.
    18. Yuruixian Zhang & Wei Chong Choo & Yuhanis Abdul Aziz & Choy Leong Yee & Jen Sim Ho, 2022. "Go Wild for a While? A Bibliometric Analysis of Two Themes in Tourism Demand Forecasting from 1980 to 2021: Current Status and Development," Data, MDPI, vol. 7(8), pages 1-38, July.
    19. Rialp, Alex & Merigó, José M. & Cancino, Christian A. & Urbano, David, 2019. "Twenty-five years (1992–2016) of the International Business Review: A bibliometric overview," International Business Review, Elsevier, vol. 28(6), pages 1-1.
    20. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:25:y:2019:i:3:p:448-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.