IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i3p1868-1877.html
   My bibliography  Save this article

From geometric invariants and symbolic matrixes towards new perspectives on forecasting of PWM converter dynamics

Author

Listed:
  • Kolokolov, Yury V.
  • Monovskaya, Anna V.

Abstract

In this paper the fractal method of nonlinear dynamics forecasting regarding PWM converters is developed by transition towards symbolic modelling. Previously, within the fractal method bounds the technique of combining of several forms of dynamics description (in the form of periodic process domains in a bifurcation diagram and in the form of time series) into one special space was presented [Chaos, Solitons and Fractals 2005;23(1), 24(3), 25(5)]. It was answered positively on the question about the possibility of estimation of transient convergence direction in real-time mode. Now, presentation of a dynamic process is proposed as the consecution of geometric invariants. Correspondingly, the symbolical model of a periodic process represents the combination of limited number of the invariants and a transient can be analyzed through the deviations from this model. As a result, it becomes possible to forecast the direction of transient convergence under parametric uncertainties, that is important in relation to the considered class of piece-wise dynamic systems. The proposed method is illustrated by computer simulations.

Suggested Citation

  • Kolokolov, Yury V. & Monovskaya, Anna V., 2009. "From geometric invariants and symbolic matrixes towards new perspectives on forecasting of PWM converter dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1868-1877.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1868-1877
    DOI: 10.1016/j.chaos.2009.03.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909002331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolokolov, Yury & Monovskaya, Anna, 2005. "Fractal principles of multidimensional data structurization for real-time pulse system dynamics forecasting and identification," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 991-1006.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    2. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    3. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    4. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    5. Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
    6. Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
    7. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    8. Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
    9. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    10. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    11. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    12. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    13. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    14. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    15. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    16. Salas-Molina, Francisco & Martin, Francisco J. & Rodríguez-Aguilar, Juan A. & Serrà, Joan & Arcos, Josep Ll., 2017. "Empowering cash managers to achieve cost savings by improving predictive accuracy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 403-415.
    17. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
    18. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    19. Riezebos, Jan & Zhu, Stuart X., 2020. "Inventory control with seasonality of lead times," Omega, Elsevier, vol. 92(C).
    20. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1868-1877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.