IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p285-d1319693.html
   My bibliography  Save this article

Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks

Author

Listed:
  • Nazim Choudhury

    (Department of Computer Science, University of Wisconsin, Green Bay, WI 54311, USA)

Abstract

The link prediction problem is a time-evolving model in network science that has simultaneously abetted myriad applications and experienced extensive methodological improvement. Inferring the possibility of emerging links in dynamic social networks, also known as the dynamic link prediction task, is complex and challenging. In contrast to the link prediction in cross-sectional networks, dynamic link prediction methods need to cater to the actor-level temporal changes and associated evolutionary information regarding their micro- (i.e., link formation/deletion) and mesoscale (i.e., community formation) network structure. With the advent of abundant community detection algorithms, the research community has examined community-aware link prediction strategies in static networks. However, the same task in dynamic networks where, apart from the actors and links among them, their community pattern is also dynamic, is yet to be explored. Evolutionary community-aware information, including the associated link structure and temporal neighborhood changes, can effectively be mined to build dynamic similarity metrics for dynamic link prediction. This study aims to develop and integrate such dynamic features with machine learning algorithms for link prediction tasks in dynamic social networks. It also compares the performances of these features against well-known similarity metrics (i.e., ResourceAllocation) for static networks and a time series-based link prediction strategy in dynamic networks. These proposed features achieved high-performance scores, representing them as prospective candidates for both dynamic link prediction tasks and modeling the network growth.

Suggested Citation

  • Nazim Choudhury, 2024. "Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:285-:d:1319693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Xiaoke & Sun, Penggang & Wang, Yu, 2018. "Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 121-136.
    2. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    3. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    4. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    5. Nazim Choudhury & Shahadat Uddin, 2016. "Time-aware link prediction to explore network effects on temporal knowledge evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 745-776, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    2. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Yueran Duan & Qing Guan, 2021. "Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3749-3773, May.
    4. Nazim Choudhury & Shahadat Uddin, 2016. "Time-aware link prediction to explore network effects on temporal knowledge evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 745-776, August.
    5. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    6. Zhang, Ting & Zhang, Kun & Li, Xun & Lv, Laishui & Sun, Qi, 2021. "Semi-supervised link prediction based on non-negative matrix factorization for temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Chen, Guangfu & Xu, Chen & Wang, Jingyi & Feng, Jianwen & Feng, Jiqiang, 2020. "Robust non-negative matrix factorization for link prediction in complex networks using manifold regularization and sparse learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    9. Lv, Laishui & Bardou, Dalal & Hu, Peng & Liu, Yanqiu & Yu, Gaohang, 2022. "Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Thiago Christiano Silva & Paulo Victor Berri Wilhelm & Diego Raphael Amancio, 2024. "Machine Learning and Economic Forecasting: the role of international trade networks," Working Papers Series 597, Central Bank of Brazil, Research Department.
    11. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    12. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    13. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    14. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    15. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    16. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    17. OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Fumitaka Furuoka & Luis A. Gil‐Alana, 2021. "A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 960-981, August.
    18. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    19. Park, Jinhee & Ahn, Hyeongjin & Kim, Dongjae & Park, Eunil, 2024. "GNN-IR: Examining graph neural networks for influencer recommendations in social media marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    20. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:285-:d:1319693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.