IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i3d10.1007_s10729-023-09638-3.html
   My bibliography  Save this article

Evaluation and implementation of a Just-In-Time bed-assignment strategy to reduce wait times for surgical inpatients

Author

Listed:
  • Aleida Braaksma

    (Massachusetts Institute of Technology)

  • Martin S. Copenhaver

    (Massachusetts General Hospital
    Harvard Medical School)

  • Ana C. Zenteno

    (Massachusetts General Hospital)

  • Elizabeth Ugarph

    (Massachusetts Institute of Technology)

  • Retsef Levi

    (Massachusetts Institute of Technology)

  • Bethany J. Daily

    (Massachusetts General Hospital)

  • Benjamin Orcutt

    (Massachusetts General Hospital)

  • Kathryn M. Turcotte

    (Massachusetts General Hospital)

  • Peter F. Dunn

    (Massachusetts General Hospital
    Harvard Medical School)

Abstract

Early bed assignments of elective surgical patients can be a useful planning tool for hospital staff; they provide certainty in patient placement and allow nursing staff to prepare for patients’ arrivals to the unit. However, given the variability in the surgical schedule, they can also result in timing mismatches—beds remain empty while their assigned patients are still in surgery, while other ready-to-move patients are waiting for their beds to become available. In this study, we used data from four surgical units in a large academic medical center to build a discrete-event simulation with which we show how a Just-In-Time (JIT) bed assignment, in which ready-to-move patients are assigned to ready-beds, would decrease bed idle time and increase access to general care beds for all surgical patients. Additionally, our simulation demonstrates the potential synergistic effects of combining the JIT assignment policy with a strategy that co-locates short-stay surgical patients out of inpatient beds, increasing the bed supply. The simulation results motivated hospital leadership to implement both strategies across these four surgical inpatient units in early 2017. In the several months post-implementation, the average patient wait time decreased 25.0% overall, driven by decreases of 32.9% for ED-to-floor transfers (from 3.66 to 2.45 hours on average) and 37.4% for PACU-to-floor transfers (from 2.36 to 1.48 hours), the two major sources of admissions to the surgical floors, without adding additional capacity.

Suggested Citation

  • Aleida Braaksma & Martin S. Copenhaver & Ana C. Zenteno & Elizabeth Ugarph & Retsef Levi & Bethany J. Daily & Benjamin Orcutt & Kathryn M. Turcotte & Peter F. Dunn, 2023. "Evaluation and implementation of a Just-In-Time bed-assignment strategy to reduce wait times for surgical inpatients," Health Care Management Science, Springer, vol. 26(3), pages 501-515, September.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:3:d:10.1007_s10729-023-09638-3
    DOI: 10.1007/s10729-023-09638-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-023-09638-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-023-09638-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bex George Thomas & Srinivas Bollapragada & Kunter Akbay & David Toledano & Peter Katlic & Onur Dulgeroglu & Dan Yang, 2013. "Automated Bed Assignments in a Complex and Dynamic Hospital Environment," Interfaces, INFORMS, vol. 43(5), pages 435-448, October.
    2. Range, Troels Martin & Lusby, Richard Martin & Larsen, Jesper, 2014. "A column generation approach for solving the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 235(1), pages 252-264.
    3. Elif Akcali & Murray Côté & Chin Lin, 2006. "A network flow approach to optimizing hospital bed capacity decisions," Health Care Management Science, Springer, vol. 9(4), pages 391-404, November.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. Michael Fairley & David Scheinker & Margaret L. Brandeau, 2019. "Improving the efficiency of the operating room environment with an optimization and machine learning model," Health Care Management Science, Springer, vol. 22(4), pages 756-767, December.
    6. Ben Bachouch, Rym & Guinet, Alain & Hajri-Gabouj, Sonia, 2012. "An integer linear model for hospital bed planning," International Journal of Production Economics, Elsevier, vol. 140(2), pages 833-843.
    7. Bastos, Leonardo S.L. & Marchesi, Janaina F. & Hamacher, Silvio & Fleck, Julia L., 2019. "A mixed integer programming approach to the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 273(3), pages 831-840.
    8. Steven Thompson & Manuel Nunez & Robert Garfinkel & Matthew D. Dean, 2009. "OR Practice---Efficient Short-Term Allocation and Reallocation of Patients to Floors of a Hospital During Demand Surges," Operations Research, INFORMS, vol. 57(2), pages 261-273, April.
    9. Fabian Schäfer & Manuel Walther & Alexander Hübner & Heinrich Kuhn, 2019. "Operational patient-bed assignment problem in large hospital settings including overflow and uncertainty management," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 1012-1041, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido, Rosita & Groccia, Maria Carmela & Conforti, Domenico, 2018. "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, Elsevier, vol. 268(2), pages 486-503.
    2. Chengliang Wang & Feifei Yang & Quan-Lin Li, 2023. "Optimal Decision of Dynamic Bed Allocation and Patient Admission with Buffer Wards during an Epidemic," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    3. Fabian Schäfer & Manuel Walther & Dominik G. Grimm & Alexander Hübner, 2023. "Combining machine learning and optimization for the operational patient-bed assignment problem," Health Care Management Science, Springer, vol. 26(4), pages 785-806, December.
    4. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    5. Liu, Haichao & Wang, Yang & Hao, Jin-Kao, 2024. "Solving the patient admission scheduling problem using constraint aggregation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 85-99.
    6. Hejer Khlif Hachicha & Farah Zeghal Mansour, 2018. "Two-MILP models for scheduling elective surgeries within a private healthcare facility," Health Care Management Science, Springer, vol. 21(3), pages 376-392, September.
    7. David Scheinker & Margaret L. Brandeau, 2020. "Implementing Analytics Projects in a Hospital: Successes, Failures, and Opportunities," Interfaces, INFORMS, vol. 50(3), pages 176-189, May.
    8. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    9. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    10. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    11. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    12. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    13. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    14. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    15. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    16. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    17. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    18. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    19. Golmohammadi, Davood & Radnia, Naeimeh, 2016. "Prediction modeling and pattern recognition for patient readmission," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 151-161.
    20. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:3:d:10.1007_s10729-023-09638-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.