IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924017392.html
   My bibliography  Save this article

Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation

Author

Listed:
  • Chen, Yuejiang
  • Xiao, Jiang-Wen
  • Wang, Yan-Wu
  • Luo, Yunfeng

Abstract

Probabilistic forecasting plays an important role in the safety, stability and operation of power system. The traditional quantile regression method of non-parametric probability forecasting has the problem of crossing-quantile. Besides, current neural network methods for wind farm cluster power forecasting often overlook the spatio-temporal correlation among related wind farms. To solve these problems, a cluster power forecasting model (CFM) considering spatio-temporal correlation is proposed in this paper. A novel spatial pattern attention (SPA) combining the advantages of convolutional neural network and attention mechanism is used to extract the spatial information. An improved multi-horizon quantile recurrent neural network (IMQ-RNN) and an improved non-crossing quantile regression (INCQR) strategy are used as the output module of CFM to produce high quality forecasting results. Numerical simulations are conducted by using public real-world data from the Global Energy Forecasting Competition 2014. The results show that the proposed model has excellent performance in both deterministic forecasting and probabilistic forecasting.

Suggested Citation

  • Chen, Yuejiang & Xiao, Jiang-Wen & Wang, Yan-Wu & Luo, Yunfeng, 2025. "Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017392
    DOI: 10.1016/j.apenergy.2024.124356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.