IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v5y2011i3p203-219.html
   My bibliography  Save this article

Zur Prognose der Lebenserwartung in Deutschland: Ein Vergleich verschiedener Verfahren

Author

Listed:
  • Hendrik Hansen
  • Peter Pflaumer

Abstract

No abstract is available for this item.

Suggested Citation

  • Hendrik Hansen & Peter Pflaumer, 2011. "Zur Prognose der Lebenserwartung in Deutschland: Ein Vergleich verschiedener Verfahren," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 5(3), pages 203-219, December.
  • Handle: RePEc:spr:astaws:v:5:y:2011:i:3:p:203-219
    DOI: 10.1007/s11943-011-0108-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11943-011-0108-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11943-011-0108-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pflaumer, Peter, 1988. "Confidence intervals for population projections based on Monte Carlo methods," International Journal of Forecasting, Elsevier, vol. 4(1), pages 135-142.
    2. Peter Congdon, 1993. "Statistical Graduation in Local Demographic Analysis and Projection," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 156(2), pages 237-270, March.
    3. Bernhard Babel & Eckart Bomsdorf & Rafael Schmidt, 2008. "Forecasting German mortality using panel data procedures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 21(3), pages 541-555, July.
    4. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    5. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    6. Elisabetta Barbi, 2008. "Regularities and deviations in mortality trends of the developed world," MPIDR Working Papers WP-2008-014, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    8. Warren C. Sanderson & Sergei Scherbov, 2007. "A new perspective on population aging," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 16(2), pages 27-58.
    9. Renshaw, A. E. & Haberman, S., 1997. "Dual modelling and select mortality," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 105-126, April.
    10. Anatoli Yashin & Ivan Iachine & Alexander Begun, 2000. "Mortality modeling: A review," Mathematical Population Studies, Taylor & Francis Journals, vol. 8(4), pages 305-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuchs, Johann & Söhnlein, Doris & Weber, Brigitte & Weber, Enzo, 2016. "Ein integriertes Modell zur Schätzung von Arbeitskräfteangebot und Bevölkerung," IAB-Forschungsbericht 201610, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    2. Hans Brachinger, 2011. "Vorwort des Herausgebers," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 5(1), pages 1-3, March.
    3. Hendrik Hansen, 2013. "The forecasting performance of mortality models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 11-31, January.
    4. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    5. Fuchs, Johann & Söhnlein, Doris & Weber, Brigitte & Weber, Enzo, 2017. "Forecasting labour supply and population: an integrated stochastic model," IAB-Discussion Paper 201701, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendrik Hansen, 2013. "The forecasting performance of mortality models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 11-31, January.
    2. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    5. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    6. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    7. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    8. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    9. He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
    10. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    11. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    12. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    13. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    14. repec:hum:wpaper:sfb649dp2009-008 is not listed on IDEAS
    15. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    16. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    17. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    18. Hanewald, Katja, 2009. "Lee-Carter and the macroeconomy," SFB 649 Discussion Papers 2009-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    20. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    21. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    22. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.

    More about this item

    Keywords

    Mortalität; Sterbetafel; Prognose; Brass-Verhältnismodell; C53; I12; J11; Mortality; Life Table; Forecasting; Brass-Relational-Model;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:5:y:2011:i:3:p:203-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.