IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.06631.html
   My bibliography  Save this paper

Joint Models for Cause-of-Death Mortality in Multiple Populations

Author

Listed:
  • Nhan Huynh
  • Mike Ludkovski

Abstract

We investigate jointly modeling Age-specific rates of various causes of death in a multinational setting. We apply Multi-Output Gaussian Processes (MOGP), a spatial machine learning method, to smooth and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study involving cancer variations in three European nations, and a US-based study that considers eight top-level causes and includes comparison to all-cause analysis. Our models provide insights into the commonality of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.

Suggested Citation

  • Nhan Huynh & Mike Ludkovski, 2021. "Joint Models for Cause-of-Death Mortality in Multiple Populations," Papers 2111.06631, arXiv.org.
  • Handle: RePEc:arx:papers:2111.06631
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.06631
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    2. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    3. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    4. Ewa Tabeau & Peter Ekamper & Corina Huisman & Alinda Bosch, 1999. "Improving Overall Mortality Forecasts by Analysing Cause-of-Death, Period and Cohort Effects in Trends," European Journal of Population, Springer;European Association for Population Studies, vol. 15(2), pages 153-183, June.
    5. Daniel H. Alai & Séverine Arnold (-Gaille) & Madhavi Bajekal & Andrés M. Villegas, 2018. "Mind the Gap: A Study of Cause-Specific Mortality by Socioeconomic Circumstances," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(2), pages 161-181, April.
    6. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    7. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    8. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    9. McNown, Robert & Rogers, Andrei, 1992. "Forecasting cause-specific mortality using time series methods," International Journal of Forecasting, Elsevier, vol. 8(3), pages 413-432, November.
    10. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    11. Yumo Dong & Fei Huang & Honglin Yu & Steven Haberman, 2020. "Multi-population mortality forecasting using tensor decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(8), pages 754-775, September.
    12. Séverine Arnold (-Gaille) & Michael Sherris, 2013. "Forecasting Mortality Trends Allowing for Cause-of-Death Mortality Dependence," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(4), pages 273-282.
    13. Ludkovski, Mike & Risk, Jimmy & Zail, Howard, 2018. "Gaussian Process Models For Mortality Rates And Improvement Factors," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1307-1347, September.
    14. Kleinow, Torsten, 2015. "A common age effect model for the mortality of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 147-152.
    15. Ludkovski, Mike & Risk, Jimmy & Zail, Howard, 2018. "Gaussian Process Models For Mortality Rates And Improvement Factors – Corrigendum," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1349-1349, September.
    16. Huynh, Nhan & Ludkovski, Mike, 2021. "Multi-output Gaussian processes for multi-population longevity modelling," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 318-345, July.
    17. Pintao Lyu & Anja De Waegenaere & Bertrand Melenberg, 2021. "A Multi-population Approach to Forecasting All-Cause Mortality Using Cause-of-Death Mortality Data," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(S1), pages 421-456, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
    5. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    6. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    7. Zhang, Xuanming & Huang, Fei & Hui, Francis K.C. & Haberman, Steven, 2023. "Cause-of-death mortality forecasting using adaptive penalized tensor decompositions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 193-213.
    8. Kyran Cupido & Petar Jevtić & Tim J. Boonen, 2024. "Space, mortality, and economic growth," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1321-1337, August.
    9. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    10. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    11. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    12. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
    13. Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
    14. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    15. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
    16. Emanuele Aliverti & Stefano Mazzuco & Bruno Scarpa, 2022. "Dynamic modelling of mortality via mixtures of skewed distribution functions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1030-1048, July.
    17. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    18. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    19. Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
    20. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.06631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.