Censored Nonparametric Time-Series Analysis with Autoregressive Error Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-020-10010-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
- Philip K. Hopke & Chuanhai Liu & Donald B. Rubin, 2001. "Multiple Imputation for Multivariate Data with Missing and Below‐Threshold Measurements: Time‐Series Concentrations of Pollutants in the Arctic," Biometrics, The International Biometric Society, vol. 57(1), pages 22-33, March.
- Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
- Zheng, John Xu, 1998. "A Consistent Nonparametric Test Of Parametric Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 123-138, February.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Tianxi Cai & Rebecca A. Betensky, 2003. "Hazard Regression for Interval-Censored Data with Penalized Spline," Biometrics, The International Biometric Society, vol. 59(3), pages 570-579, September.
- P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
- Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
- Jung Park & Marc Genton & Sujit Ghosh, 2009. "Nonparametric autocovariance estimation from censored time series by Gaussian imputation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 241-259.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Hayashi, Masayoshi, 2014.
"Forecasting welfare caseloads: The case of the Japanese public assistance program,"
Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
- Masayoshi Hayashi, 2012. "Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program," CIRJE F-Series CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
- Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
- Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010.
"Combining Nonparametric and Optimal Linear Time Series Predictions,"
Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
- Sophie DABO-NIANG & Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Combining Nonparametric and Optimal Linear Time Series Predictions," Working Papers 2009-18, Center for Research in Economics and Statistics.
- Whang, Yoon-Jae & Linton, Oliver, 1999.
"The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series,"
Journal of Econometrics, Elsevier, vol. 91(1), pages 1-42, July.
- Yoon-Jae Whang & Oliver Linton, 1997. "The Asymptotic Distribution of Nonparametric Estimates of the Lyapunov Exponent for Stochastic Time Series," Cowles Foundation Discussion Papers 1130R, Cowles Foundation for Research in Economics, Yale University.
- Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017.
"Nonparametric estimation of dynamic discrete choice models for time series data,"
Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
- Byeong U. Park & Leopold Simar & Valentin Zelenyuk, 2016. "Nonparametric Estimation of Dynamic Discrete Choice Models for Time Series Data," CEPA Working Papers Series WP062016, School of Economics, University of Queensland, Australia.
- Park, Byeong U. & Simar, Leopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," LIDAM Reprints ISBA 2017011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014.
"Does Education Matter for Economic Growth?,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
- Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2011. "Does Education Matter for Economic Growth?," Working Papers 2011-13, University of Miami, Department of Economics.
- Delgado, Michael S. & Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Does Education Matter for Economic Growth?," IZA Discussion Papers 7089, Institute of Labor Economics (IZA).
- Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
- Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
- Martin Evans and Richard K. Lyons, 2002. "Are Different-Currency Assets Imperfect Substitutes?," Working Papers gueconwpa~02-02-12, Georgetown University, Department of Economics.
- Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
- Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
- Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
- Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
- Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
- Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
- Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
More about this item
Keywords
Censored time series; Penalized spline; Smoothing spline; Auto-correlated data; Imputation method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:58:y:2021:i:2:d:10.1007_s10614-020-10010-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.