Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117695
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
- Bartosz Uniejewski & Jakub Nowotarski & Rafał Weron, 2016.
"Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 9(8), pages 1-22, August.
- Bartosz Uniejewski & Jakub Nowotarski & Rafal Weron, 2016. "Automated variable selection and shrinkage for day-ahead electricity price forecasting," HSC Research Reports HSC/16/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
- Bartosz Uniejewski & Rafał Weron, 2018.
"Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models,"
Energies, MDPI, vol. 11(8), pages 1-26, August.
- Bartosz Uniejewski & Rafal Weron, 2018. "Efficient forecasting of electricity spot prices with expert and LASSO models," HSC Research Reports HSC/18/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
- Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xuqian Yan & Carlo Locci & Florian Hiss & Astrid Nieße, 2024. "State-of-Health Estimation for Industrial H 2 Electrolyzers with Transfer Linear Regression," Energies, MDPI, vol. 17(6), pages 1-19, March.
- Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
- Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
- Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
- Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
- Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
- Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
- Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
- Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
- Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
- Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
- Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Sharma, Ekta & Salcedo-Sanz, Sancho & Barua, Prabal Datta & Rajendra Acharya, U., 2024. "Half-hourly electricity price prediction with a hybrid convolution neural network-random vector functional link deep learning approach," Applied Energy, Elsevier, vol. 374(C).
- Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
- Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Miguel Pinhão & Miguel Fonseca & Ricardo Covas, 2022. "Electricity Spot Price Forecast by Modelling Supply and Demand Curve," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
- Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
- Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
- Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
More about this item
Keywords
Adversarial network; Augmentation; Autoencoder; Electricity price forecasting; Multivariate time series; Regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.