IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v471y2022ics030438002200148x.html
   My bibliography  Save this article

A northeast United States Atlantis marine ecosystem model with ocean reanalysis and ocean color forcing

Author

Listed:
  • Caracappa, Joseph C.
  • Beet, Andrew
  • Gaichas, Sarah
  • Gamble, Robert J.
  • Hyde, Kimberly J.W.
  • Large, Scott I.
  • Morse, Ryan E.
  • Stock, Charles A.
  • Saba, Vincent S.

Abstract

The northeast United States Atlantis model (NEUSv2) is an end-to-end ecosystem model that can simulate biogeochemical, ecological, fishery, management, and socio-economic processes within marine ecosystems. As a major update to the original model, NEUSv2 includes changes to the model's functional group definitions and forcing data. NEUSv2 is the first Atlantis model to use a satellite-ocean-color-derived phytoplankton size class model that was tuned specifically for the region to force marine primary production. Additionally, physical ocean variables (currents, temperature, and salinity) were updated using a high-resolution global ocean reanalysis. Despite its coarse resolution, NEUSv2 was capable of reproducing the broad spatial patterns seen in the physical and biological forcing sources, with the exception of some circulation features. NEUSv2 produced plausible zooplankton and planktivore biomass, a stable lower trophic food web, and recent trends in zooplankton biomass. NEUSv2 meets calibration criteria for the persistence and long-term stability of functional group biomass. Given the success of this new Atlantis forcing approach, we detail the observations and challenges regarding spatial scale-related processes, data assimilation, and biological calibration. We also discuss possible tradeoffs with model scope, calibration, and the availability of feedback mechanisms. This NEUSv2 hindcast is well suited for exploring ecosystem-level sensitivity to lower trophic processes and for testing alternative biogeochemical forcing. Further developments will improve model performance for higher trophic levels.

Suggested Citation

  • Caracappa, Joseph C. & Beet, Andrew & Gaichas, Sarah & Gamble, Robert J. & Hyde, Kimberly J.W. & Large, Scott I. & Morse, Ryan E. & Stock, Charles A. & Saba, Vincent S., 2022. "A northeast United States Atlantis marine ecosystem model with ocean reanalysis and ocean color forcing," Ecological Modelling, Elsevier, vol. 471(C).
  • Handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s030438002200148x
    DOI: 10.1016/j.ecolmodel.2022.110038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200148X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kearney, Kelly A. & Stock, Charles & Aydin, Kerim & Sarmiento, Jorge L., 2012. "Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: Description and validation for the subarctic Pacific," Ecological Modelling, Elsevier, vol. 237, pages 43-62.
    2. Hodgson, Emma E. & Kaplan, Isaac C. & Marshall, Kristin N. & Leonard, Jerry & Essington, Timothy E. & Busch, D. Shallin & Fulton, Elizabeth A. & Harvey, Chris J. & Hermann, Albert J. & McElhany, Paul, 2018. "Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in nor," Ecological Modelling, Elsevier, vol. 383(C), pages 106-117.
    3. Bossier, Sieme & Nielsen, J. Rasmus & Almroth-Rosell, Elin & Höglund, Anders & Bastardie, Francois & Neuenfeldt, Stefan & Wåhlström, Iréne & Christensen, Asbjørn, 2021. "Integrated ecosystem impacts of climate change and eutrophication on main Baltic fishery resources," Ecological Modelling, Elsevier, vol. 453(C).
    4. Ihde, Thomas F. & Townsend, Howard M., 2017. "Accounting for multiple stressors influencing living marine resources in a complex estuarine ecosystem using an Atlantis model," Ecological Modelling, Elsevier, vol. 365(C), pages 1-9.
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Travers, M. & Shin, Y.-J. & Jennings, S. & Machu, E. & Huggett, J.A. & Field, J.G. & Cury, P.M., 2009. "Two-way coupling versus one-way forcing of plankton and fish models to predict ecosystem changes in the Benguela," Ecological Modelling, Elsevier, vol. 220(21), pages 3089-3099.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perryman, Holly A. & Kaplan, Isaac C. & Blanchard, Julia L. & Fay, Gavin & Gaichas, Sarah K. & McGregor, Vidette L. & Morzaria-Luna, Hem Nalini & Porobic, Javier & Townsend, Howard & Fulton, Elizabeth, 2023. "Atlantis Ecosystem Model Summit 2022: Report from a workshop," Ecological Modelling, Elsevier, vol. 483(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skartsæterhagen, Maria & Hansen, Cecilie & Fulton, Elizabeth A., 2024. "Exploring ecosystem effects of underwater noise in the nordic seas, using the NoBa-Atlantis E2E model," Ecological Modelling, Elsevier, vol. 492(C).
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    5. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    6. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    7. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    8. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    9. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    10. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    11. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    12. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    13. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    14. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720.
    15. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    16. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    17. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    18. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    19. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    20. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s030438002200148x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.