Functional hourly forecasting of water temperature
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007.
"Forecast comparison of principal component regression and principal covariate regression,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.
- Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2005. "Forecast comparison of principal component regression and principal covariate regression," Econometric Institute Research Papers EI 2005-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
- Liu, Dandan & Jansen, Dennis W., 2007. "Macroeconomic forecasting using structural factor analysis," International Journal of Forecasting, Elsevier, vol. 23(4), pages 655-677.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
- Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
- Bircan Erbas & Rob J. Hyndman & Dorota M. Gertig, 2005. "Forecasting age-specific breast cancer mortality using functional data models," Monash Econometrics and Business Statistics Working Papers 3/05, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Cornillon, P.-A. & Imam, W. & Matzner-Lober, E., 2008. "Forecasting time series using principal component analysis with respect to instrumental variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1269-1280, January.
- Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009.
"Time Series Modelling With Semiparametric Factor Dynamics,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
- Borak, Szymon & Härdle, Wolfgang Karl & Mammen, Enno & Park, Byeong U., 2007. "Time series modelling with semiparametric factor dynamics," SFB 649 Discussion Papers 2007-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Farah Yasmeen & Rob J Hyndman & Bircan Erbas, 2010. "Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach," Monash Econometrics and Business Statistics Working Papers 9/10, Monash University, Department of Econometrics and Business Statistics.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- repec:hum:wpaper:sfb649dp2010-039 is not listed on IDEAS
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Bräuning, Falk & Koopman, Siem Jan, 2014.
"Forecasting macroeconomic variables using collapsed dynamic factor analysis,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
- Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
- Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
- Bork, Lasse, 2009.
"Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach,"
Finance Research Group Working Papers
F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- repec:dau:papers:123456789/11692 is not listed on IDEAS
- Song, Song & Härdle, Wolfgang Karl & Ritov, Ya'acov, 2010. "High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model," SFB 649 Discussion Papers 2010-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Marcellino, Massimiliano & Eickmeier, Sandra & Lemke, Wolfgang, 2011.
"Classical time-varying FAVAR models - Estimation, forecasting and structural analysis,"
CEPR Discussion Papers
8321, C.E.P.R. Discussion Papers.
- Eickmeier, Sandra & Lemke, Wolfgang & Marcellino, Massimiliano, 2011. "Classical time-varying FAVAR models - estimation, forecasting and structural analysis," Discussion Paper Series 1: Economic Studies 2011,04, Deutsche Bundesbank.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- repec:ipg:wpaper:2014-414 is not listed on IDEAS
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Lütkepohl, Helmut, 2014.
"Structural vector autoregressive analysis in a data rich environment: A survey,"
SFB 649 Discussion Papers
2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
- Johannes Tang Kristensen, 2013. "Diffusion Indexes with Sparse Loadings," CREATES Research Papers 2013-22, Department of Economics and Business Economics, Aarhus University.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
- Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:4:p:684-699. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.