IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i3p518-525.html
   My bibliography  Save this article

Monitoring processes with changing variances

Author

Listed:
  • Ord, J. Keith
  • Koehler, Anne B.
  • Snyder, Ralph D.
  • Hyndman, Rob J.

Abstract

Statistical process control (SPC) has evolved beyond its classical applications in manufacturing to monitoring economic and social phenomena. This extension has required the consideration of autocorrelated and possibly non-stationary time series. Less attention has been paid to the possibility that the variance of the process may also change over time. In this paper we use the innovations state space modeling framework to develop conditionally heteroscedastic models. We provide examples to show that the incorrect use of homoscedastic models may lead to erroneous decisions about the nature of the process.

Suggested Citation

  • Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:518-525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00100-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    3. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    4. A B Koehler & N B Marks & R T O'connell, 2001. "EWMA control charts for autoregressive processes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 699-707, June.
    5. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    6. Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
    7. Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
    8. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    9. Cohen, Jacqueline & Garman, Samuel & Gorr, Wilpen, 2009. "Empirical calibration of time series monitoring methods using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(3), pages 484-497, July.
    10. Xia Pan & Jeffrey Jarrett, 2004. "Applying State Space to SPC: Monitoring Multivariate Time Series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(4), pages 397-418.
    11. Don G. Wardell & Herbert Moskowitz & Robert D. Plante, 1992. "Control Charts in the Presence of Data Correlation," Management Science, INFORMS, vol. 38(8), pages 1084-1105, August.
    12. Gary K. Grunwald & Kais Hamza & Rob J. Hyndman, 1997. "Some Properties and Generalizations of Non‐negative Bayesian Time Series Models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 615-626.
    13. Layth C. Alwan & Harry V. Roberts, 1995. "The Problem of Misplaced Control Limits," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(3), pages 269-278, September.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yikai & Corr, David J. & Durango-Cohen, Pablo L., 2014. "Analysis of common-cause and special-cause variation in the deterioration of transportation infrastructure: A field application of statistical process control for structural health monitoring," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 96-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
    2. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
    3. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    4. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    5. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    6. repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
    7. de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
    8. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    9. Ridley, D. & Duke, D., 2007. "Moving -window spectral model based statistical process control," International Journal of Production Economics, Elsevier, vol. 105(2), pages 492-509, February.
    10. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    11. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    13. Higuchi, Tomoyuki, 1999. "Applications of quasi-periodic oscillation models to seasonal small count time series," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 281-301, May.
    14. Ralph Snyder & Adrian Beaumont & J. Keith Ord, 2012. "Intermittent demand forecasting for inventory control: A multi-series approach," Monash Econometrics and Business Statistics Working Papers 15/12, Monash University, Department of Econometrics and Business Statistics.
    15. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    16. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    17. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    18. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    19. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    20. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    21. repec:wyi:journl:002087 is not listed on IDEAS
    22. Mai, Nhat Chi, 2022. "Tác động của lạm phát đến hoạt động của thị trường chứng khoán ở Việt Nam: Kiểm chứng bằng mô hình GARCH," OSF Preprints azcqd, Center for Open Science.

    More about this item

    Keywords

    Control charts GARCH Heteroscedasticity Innovations State space Statistical process control;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:518-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.