IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159885.html
   My bibliography  Save this article

Big Data Sensors of Organic Advocacy: The Case of Leonardo DiCaprio and Climate Change

Author

Listed:
  • Eric C Leas
  • Benjamin M Althouse
  • Mark Dredze
  • Nick Obradovich
  • James H Fowler
  • Seth M Noar
  • Jon-Patrick Allem
  • John W Ayers

Abstract

The strategies that experts have used to share information about social causes have historically been top-down, meaning the most influential messages are believed to come from planned events and campaigns. However, more people are independently engaging with social causes today than ever before, in part because online platforms allow them to instantaneously seek, create, and share information. In some cases this “organic advocacy” may rival or even eclipse top-down strategies. Big data analytics make it possible to rapidly detect public engagement with social causes by analyzing the same platforms from which organic advocacy spreads. To demonstrate this claim we evaluated how Leonardo DiCaprio’s 2016 Oscar acceptance speech citing climate change motivated global English language news (Bloomberg Terminal news archives), social media (Twitter postings) and information seeking (Google searches) about climate change. Despite an insignificant increase in traditional news coverage (54%; 95%CI: -144 to 247), tweets including the terms “climate change” or “global warming” reached record highs, increasing 636% (95%CI: 573–699) with more than 250,000 tweets the day DiCaprio spoke. In practical terms the “DiCaprio effect” surpassed the daily average effect of the 2015 Conference of the Parties (COP) and the Earth Day effect by a factor of 3.2 and 5.3, respectively. At the same time, Google searches for “climate change” or “global warming” increased 261% (95%CI, 186–335) and 210% (95%CI 149–272) the day DiCaprio spoke and remained higher for 4 more days, representing 104,190 and 216,490 searches. This increase was 3.8 and 4.3 times larger than the increases observed during COP’s daily average or on Earth Day. Searches were closely linked to content from Dicaprio’s speech (e.g., “hottest year”), as unmentioned content did not have search increases (e.g., “electric car”). Because these data are freely available in real time our analytical strategy provides substantial lead time for experts to detect and participate in organic advocacy while an issue is salient. Our study demonstrates new opportunities to detect and aid agents of change and advances our understanding of communication in the 21st century media landscape.

Suggested Citation

  • Eric C Leas & Benjamin M Althouse & Mark Dredze & Nick Obradovich & James H Fowler & Seth M Noar & Jon-Patrick Allem & John W Ayers, 2016. "Big Data Sensors of Organic Advocacy: The Case of Leonardo DiCaprio and Climate Change," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0159885
    DOI: 10.1371/journal.pone.0159885
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159885
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159885&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence C Hamilton & Joel Hartter & Mary Lemcke-Stampone & David W Moore & Thomas G Safford, 2015. "Tracking Public Beliefs About Anthropogenic Climate Change," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-14, September.
    2. Duncan J. Watts, 2007. "A twenty-first century science," Nature, Nature, vol. 445(7127), pages 489-489, February.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    5. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    6. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    7. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    8. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    9. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    10. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    11. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    12. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    13. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720.
    14. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    15. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    16. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    17. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    18. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    19. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
    20. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.