IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i2p35-d218270.html
   My bibliography  Save this article

Mortality Projections for Small Populations: An Application to the Maltese Elderly

Author

Listed:
  • Massimiliano Menzietti

    (Department of Economics, Statistics and Finance “Giovanni Anania”, University of Calabria, Ponte Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
    These authors contributed equally to this work.)

  • Maria Francesca Morabito

    (Department of Economics, Statistics and Finance “Giovanni Anania”, University of Calabria, Ponte Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
    These authors contributed equally to this work.)

  • Manuela Stranges

    (Department of Economics, Statistics and Finance “Giovanni Anania”, University of Calabria, Ponte Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
    These authors contributed equally to this work.)

Abstract

In small populations, mortality rates are characterized by a great volatility, the datasets are often available for a few years and suffer from missing data. Therefore, standard mortality models may produce high uncertain and biologically improbable projections. In this paper, we deal with the mortality projections of the Maltese population, a small country with less than 500,000 inhabitants, whose data on exposures and observed deaths suffers from all the typical problems of small populations. We concentrate our analysis on older adult mortality. Starting from some recent suggestions in the literature, we assume that the mortality of a small population can be modeled starting from the mortality of a bigger one (the reference population) adding a spread. The first part of the paper is dedicated to the choice of the reference population, then we test alternative mortality models. Finally, we verify the capacity of the proposed approach to reduce the volatility of the mortality projections. The results obtained show that the model is able to significantly reduce the uncertainty of projected mortality rates and to ensure their coherent and biologically reasonable evolution.

Suggested Citation

  • Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:35-:d:218270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/2/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/2/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    2. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    3. Jarner, Søren Fiig & Kryger, Esben Masotti, 2011. "Modelling Adult Mortality in Small Populations: The Saint Model," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 377-418, November.
    4. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    5. Hunt, Andrew & Blake, David, 2017. "Modelling Mortality For Pension Schemes," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 601-629, May.
    6. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    7. Willets, R. C., 2004. "The Cohort Effect: Insights and Explanations," British Actuarial Journal, Cambridge University Press, vol. 10(4), pages 833-877, October.
    8. Wan, Cheng & Bertschi, Ljudmila, 2015. "Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 66-75.
    9. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    10. John Bongaarts, 2005. "Long-range trends in adult mortality: Models and projection methods," Demography, Springer;Population Association of America (PAA), vol. 42(1), pages 23-49, February.
    11. Villegas, Andrés M. & Haberman, Steven & Kaishev, Vladimir K. & Millossovich, Pietro, 2017. "A Comparative Study Of Two-Population Models For The Assessment Of Basis Risk In Longevity Hedges," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 631-679, September.
    12. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    13. Ahcan, Ales & Medved, Darko & Olivieri, Annamaria & Pitacco, Ermanno, 2014. "Forecasting mortality for small populations by mixing mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 12-27.
    14. Wang, Hsin-Chung & Yue, Ching-Syang Jack & Chong, Chen-Tai, 2018. "Mortality models and longevity risk for small populations," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 351-359.
    15. Kleinow, Torsten, 2015. "A common age effect model for the mortality of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 147-152.
    16. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    17. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    18. Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo & Lorenzo Trapani, 2014. "Detecting Common Longevity Trends by a Multiple Population Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 139-149.
    19. Andrés Villegas & Steven Haberman, 2014. "On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application to Deprivation and Mortality in England," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 168-193.
    20. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    21. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    22. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    7. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    8. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    9. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    10. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    11. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    12. Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
    13. David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
    14. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    15. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    16. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    17. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    18. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    19. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    20. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:35-:d:218270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.