Forecasting ATM cash demands using a local learning model of cerebellar associative memory network
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Balkin, Sandy D. & Ord, J. Keith, 2000. "Automatic neural network modeling for univariate time series," International Journal of Forecasting, Elsevier, vol. 16(4), pages 509-515.
- de Menezes, Lilian M. & Nikolaev, Nikolay Y., 2006. "Forecasting with genetically programmed polynomial neural networks," International Journal of Forecasting, Elsevier, vol. 22(2), pages 249-265.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005.
"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination,"
International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
- Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 09 Nov 2004.
- Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
- Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Suder, Marcin & Gurgul, Henryk & Barbosa, Belem & Machno, Artur & Lach, Łukasz, 2024. "Effectiveness of ATM withdrawal forecasting methods under different market conditions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Ágoston, Kolos Cs. & Benedek, Gábor & Gilányi, Zsolt, 2016. "Pareto improvement and joint cash management optimisation for banks and cash-in-transit firms," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1074-1082.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011.
"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
- Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
- OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Fumitaka Furuoka & Luis A. Gil‐Alana, 2021. "A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 960-981, August.
- Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
- Yaya, OlaOluwa S & Ogbonna, Ephraim A & Furuoka, Fumitaka & Gil-Alana, Luis A., 2019. "A new unit root analysis for testing hysteresis in unemployment," MPRA Paper 96621, University Library of Munich, Germany.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Tea Šestanović & Josip Arnerić, 2021. "Can Recurrent Neural Networks Predict Inflation in Euro Zone as Good as Professional Forecasters?," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
- Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006.
"Building neural network models for time series: a statistical approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
- Medeiros, Marcelo C. & Teräsvirta, Timo & Rech, Gianluigi, 2002. "Building neural network models for time series: A statistical approach," SSE/EFI Working Paper Series in Economics and Finance 508, Stockholm School of Economics.
- Marcelo C. Medeiros & Timo Terasvirta & Gianluigi Rech, 2002. "Building Neural Network Models for Time Series: A Statistical Approach," Textos para discussão 461, Department of Economics PUC-Rio (Brazil).
- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Tea Šestanović & Josip Arnerić, 2021. "Neural network structure identification in inflation forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 62-79, January.
- Aslanidis, Nektarios & Christiansen, Charlotte, 2012.
"Smooth transition patterns in the realized stock–bond correlation,"
Journal of Empirical Finance, Elsevier, vol. 19(4), pages 454-464.
- Nektarios Aslanidis & Charlotte Christiansen, 2010. "Smooth Transition Patterns in the Realized Stock Bond Correlation," CREATES Research Papers 2010-15, Department of Economics and Business Economics, Aarhus University.
- Aslanidis, Nektarios & Christiansen, Charlotte, 2011. "Smooth Transition Patterns in the Realized Stock- Bond Correlation," Working Papers 2072/152138, Universitat Rovira i Virgili, Department of Economics.
- Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Hayashi, Masayoshi, 2014.
"Forecasting welfare caseloads: The case of the Japanese public assistance program,"
Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
- Masayoshi Hayashi, 2012. "Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program," CIRJE F-Series CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011.
"Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816.
- Kurmaş Akdoğan, 2017.
"Unemployment hysteresis and structural change in Europe,"
Empirical Economics, Springer, vol. 53(4), pages 1415-1440, December.
- Kurmas Akdogan, 2016. "Unemployment Hysteresis and Structural Change in Europe," Working Papers 1618, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Gomes, Orlando, 2009.
"Stability under learning: The endogenous growth problem,"
Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
- Orlando Gomes, 2008. "Stability under Learning: the Endogenous Growth Problem," Working Papers Series 1 ercwp1708, ISCTE-IUL, Business Research Unit (BRU-IUL).
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
More about this item
Keywords
NN5 Time series forecasting PSECMAC Local learning model;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:3:p:760-776. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.