IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v60y2002i4p459-473.html
   My bibliography  Save this article

Estimation for a class of generalized state-space time series models

Author

Listed:
  • Fukasawa, T.
  • Basawa, I. V.

Abstract

State-space models with exponential and conjugate exponential family densities are introduced. Examples include Poisson-Gamma, Binomial-Beta, Gamma-Gamma and Normal-Normal processes. Maximum likelihood and quasilikelihood estimators and their properties are discussed. Results from a simulation study for the Poisson-Gamma model are reported.

Suggested Citation

  • Fukasawa, T. & Basawa, I. V., 2002. "Estimation for a class of generalized state-space time series models," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 459-473, December.
  • Handle: RePEc:eee:stapro:v:60:y:2002:i:4:p:459-473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00325-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanizaki, Hisashi, 1993. "Kalman Filter Model with Qualitative Dependent Variables," The Review of Economics and Statistics, MIT Press, vol. 75(4), pages 747-752, November.
    2. Gary K. Grunwald & Kais Hamza & Rob J. Hyndman, 1997. "Some Properties and Generalizations of Non‐negative Bayesian Time Series Models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 615-626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Haitao & Basawa, Ishwar V., 2008. "First-order observation-driven integer-valued autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 1-9, January.
    2. Chen Xi & Wang Lihong, 2013. "Conditional L1 estimation for random coefficient integer-valued autoregressive processes," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 221-235, August.
    3. Kai Yang & Yao Kang & Dehui Wang & Han Li & Yajing Diao, 2019. "Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 863-889, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    2. Naik, P. & Piersma, N., 2002. "Understanding the role of marketing communications in direct marketing," Econometric Institute Research Papers EI 2002-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Rob J. Hyndman & Lydia Shenstone, 2005. "Stochastic models underlying Croston's method for intermittent demand forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
    4. Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
    5. Du, Rex Yuxing & Kamakura, Wagner A., 2015. "Improving the statistical performance of tracking studies based on repeated cross-sections with primary dynamic factor analysis," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 94-112.
    6. Alvaro Montenegro, 2005. "Introducción al filtro Kalman," Documentos de Economía 2920, Universidad Javeriana - Bogotá.
    7. Zhen, X. & Basawa, I.V., 2009. "Observation-driven generalized state space models for categorical time series," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2462-2468, December.
    8. Higuchi, Tomoyuki, 1999. "Applications of quasi-periodic oscillation models to seasonal small count time series," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 281-301, May.
    9. Ralph Snyder & Adrian Beaumont & J. Keith Ord, 2012. "Intermittent demand forecasting for inventory control: A multi-series approach," Monash Econometrics and Business Statistics Working Papers 15/12, Monash University, Department of Econometrics and Business Statistics.
    10. Tanizaki, Hisashi, 1997. "Nonlinear and nonnormal filters using Monte Carlo methods," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 417-439, September.
    11. Chung‐Hua Shen & David R. Hakes & Kenneth Brown, 1999. "Time‐Varying Response of Monetary Policy to Macroeconomic Conditions," Southern Economic Journal, John Wiley & Sons, vol. 65(3), pages 584-593, January.
    12. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    13. Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
    14. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    15. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:60:y:2002:i:4:p:459-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.