Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
- John Boylan, 2005. "Intermittent and Lumpy Demand: A Forecasting Challenge," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 1, pages 36-42, June.
- Rob J. Hyndman & Lydia Shenstone, 2005.
"Stochastic models underlying Croston's method for intermittent demand forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
- Lydia Shenstone & Rob J. Hyndman, 2003. "Stochastic models underlying Croston's method for intermittent demand forecasting," Monash Econometrics and Business Statistics Working Papers 1/03, Monash University, Department of Econometrics and Business Statistics.
- McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
- Tom Willemain, 2006. "Forecast Accuracy Metrics for Intermittent Demands: Look at the Entire Distribution of Demands," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 36-38, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Adam Fleischhacker & Pak-Wing Fok & Mokshay Madiman & Nan Wu, 2023. "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process," Decision Analysis, INFORMS, vol. 20(1), pages 73-84, March.
- Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
- Berry, Lindsay R. & Helman, Paul & West, Mike, 2020. "Probabilistic forecasting of heterogeneous consumer transaction–sales time series," International Journal of Forecasting, Elsevier, vol. 36(2), pages 552-569.
- Mike West, 2020. "Bayesian forecasting of multivariate time series: scalability, structure uncertainty and decisions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 1-31, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
- Svetunkov, Ivan & Boylan, John E., 2023. "iETS: State space model for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 265(C).
- Brajendra C. Sutradhar, 2008. "On forecasting counts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 109-129.
- Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
- Vujić, Sunčica & Commandeur, Jacques J.F. & Koopman, Siem Jan, 2016. "Intervention time series analysis of crime rates: The case of sentence reform in Virginia," Economic Modelling, Elsevier, vol. 57(C), pages 311-323.
- Suncica Vujic & Jacques Commandeur & Siem Jan Koopman, 2012. "Structural Intervention Time Series Analysis of Crime Rates: The Impact of Sentence Reform in Virginia," Tinbergen Institute Discussion Papers 12-007/4, Tinbergen Institute.
- Vujić Sunčica & Koopman Siem Jan & Commandeur J.F., 2012. "Economic Trends and Cycles in Crime: A Study for England and Wales," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(6), pages 652-677, December.
- Godolphin, E.J. & Triantafyllopoulos, Kostas, 2006. "Decomposition of time series models in state-space form," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2232-2246, May.
- Thiago R. Santos & Glaura C. Franco & Dani Gamerman, 2010. "Comparison of Classical and Bayesian Approaches for Intervention Analysis," International Statistical Review, International Statistical Institute, vol. 78(2), pages 218-239, August.
- Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
- Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
- Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
- Brannas, Kurt, 1995. "Prediction and control for a time-series count data model," International Journal of Forecasting, Elsevier, vol. 11(2), pages 263-270, June.
- Youn Ahn, Jae & Jeong, Himchan & Lu, Yang, 2021. "On the ordering of credibility factors," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 626-638.
More about this item
Keywords
Inventory management Low-count time series Bayesian statistics State-space models;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:118:y:2009:i:1:p:95-103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.