Investors’ attention and network spillover for commodity market forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.seps.2024.102023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salisu, Afees A. & Ogbonna, Ahamuefula E. & Adewuyi, Adeolu, 2020. "Google trends and the predictability of precious metals," Resources Policy, Elsevier, vol. 65(C).
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2023.
"Forecasting regional GDPs: a comparison with spatial dynamic panel data models,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 18(4), pages 530-551, October.
- Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2021. "Forecasting Regional GDPs: a Comparison with Spatial Dynamic Panel Data Models," FBK-IRVAPP Working Papers 2021-02, Research Institute for the Evaluation of Public Policies (IRVAPP), Bruno Kessler Foundation.
- Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
- Li, Liyao & Yang, Zhenlin, 2021.
"Spatial dynamic panel data models with correlated random effects,"
Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.
- Li, Liyao & Yang, Zhenlin, 2018. "Spatial Dynamic Panel Data Models with Correlated Random Effects," Economics and Statistics Working Papers 15-2018, Singapore Management University, School of Economics.
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.
- Tao Chen, 2017. "Investor Attention and Global Stock Returns," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(3), pages 358-372, July.
- Mattera, Raffaele & Otto, Philipp, 2024. "Network log-ARCH models for forecasting stock market volatility," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1539-1555.
- Malcolm Baker & Jeffrey Wurgler, 2007.
"Investor Sentiment in the Stock Market,"
Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
- Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," NBER Working Papers 13189, National Bureau of Economic Research, Inc.
- Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
- Elzaki, Raga M. & Elrasheed, Mutasim.M.M. & Elmulthum, Nagat A., 2022. "Optimal crop combination under soaring oil and energy prices in the kingdom of Saudi Arabia," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
- Pesaran, M. Hashem & Tosetti, Elisa, 2011.
"Large panels with common factors and spatial correlation,"
Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
- Pesaran, M. Hashem & Tosetti, Elisa, 2007. "Large Panels with Common Factors and Spatial Correlations," IZA Discussion Papers 3032, Institute of Labor Economics (IZA).
- Pesaran, M.H. & Tosetti, E., 2007. "Large Panels with Common Factors and Spatial Correlations," Cambridge Working Papers in Economics 0743, Faculty of Economics, University of Cambridge.
- M. Hashem Pesaran & Elisa Tosetti, 2011. "Large panels with common factors and spatial correlation," Post-Print hal-00796743, HAL.
- M. Hashem Pesaran & Elisa Tosetti, 2007. "Large Panels with Common Factors and Spatial Correlations," CESifo Working Paper Series 2103, CESifo.
- Daskalaki, Charoula & Kostakis, Alexandros & Skiadopoulos, George, 2014. "Are there common factors in individual commodity futures returns?," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 346-363.
- Ahmed, Shamim & Tsvetanov, Daniel, 2016. "The predictive performance of commodity futures risk factors," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 20-36.
- Dick van Dijk & Philip Hans Franses, 2003.
"Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 727-744, December.
- van Dijk, D.J.C. & Franses, Ph.H.B.F., 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Econometric Institute Research Papers EI 2003-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimo Guidolin & Manuela Pedio, 2021. "Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help?," Annals of Operations Research, Springer, vol. 299(1), pages 1317-1356, April.
- Zeng Tian & Swanson Norman R., 1998.
"Predictive Evaluation of Econometric Forecasting Models in Commodity Futures Markets,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-21, January.
- Zeng, T. & Swanson, N.R., 1997. "Predictive Evaluation of Econometric Forecasting Models in Commodity Futures Markets," Papers 9-97-4, Pennsylvania State - Department of Economics.
- Melody Y. Huang & Randall R. Rojas & Patrick D. Convery, 2020. "Forecasting stock market movements using Google Trend searches," Empirical Economics, Springer, vol. 59(6), pages 2821-2839, December.
- Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020.
"Commodity-price comovement and global economic activity,"
Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
- Ron Alquist & Olivier Coibion, 2014. "Commodity Price Co-Movement and Global Economic Activity," Staff Working Papers 14-32, Bank of Canada.
- Ron Alquist & Saroj Bhattarai & Olivier Coibion, 2014. "Commodity-Price Comovement and Global Economic Activity," NBER Working Papers 20003, National Bureau of Economic Research, Inc.
- Leif Anders Thorsrud, 2020.
"Words are the New Numbers: A Newsy Coincident Index of the Business Cycle,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Papers No 4/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Paper 2016/21, Norges Bank.
- Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013.
"The Fundamentals of Commodity Futures Returns,"
Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
- Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2007. "The Fundamentals of Commodity Futures Returns," NBER Working Papers 13249, National Bureau of Economic Research, Inc.
- George Athanasopoulos & Rob J Hyndman & Raffaele Mattera, 2023. "Improving out-of-sample Forecasts of Stock Price Indexes with Forecast Reconciliation and Clustering," Monash Econometrics and Business Statistics Working Papers 17/23, Monash University, Department of Econometrics and Business Statistics.
- Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2021. "Investor sentiment and stock returns: Global evidence," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 365-391.
- Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
- Pagnottoni, Paolo & Spelta, Alessandro, 2023. "The motifs of risk transmission in multivariate time series: Application to commodity prices," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
- Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
- Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
- Foucault, Thierry & Pagano, Marco & Roell, Ailsa, 2013.
"Market Liquidity: Theory, Evidence, and Policy,"
OUP Catalogue,
Oxford University Press, number 9780199936243.
- Thierry Foucault & Marco Pagano & Ailsa Röell, 2013. "Market Liquidity: Theory, Evidence and Policy," Post-Print hal-00793694, HAL.
- Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
- Fang, Hao & Chung, Chien-Ping & Lu, Yang-Cheng & Lee, Yen-Hsien & Wang, Wen-Hao, 2021. "The impacts of investors' sentiments on stock returns using fintech approaches," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Edwards, Dominiqueca R. & Idoko, Faith O. & Vogiatzis, Chrysafis & Davis, Lauren B. & Mirchandani, Pitu, 2023. "Determining optimal fuel delivery strategies under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
- Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2021. "An analysis of investor behaviour and information flows surrounding the negative WTI oil price futures event," Energy Economics, Elsevier, vol. 104(C).
- Gao, Lin & Süss, Stephan, 2015. "Market sentiment in commodity futures returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 84-103.
- B. M. Tabak & T. R. Serra & D. O. Cajueiro, 2010. "Topological properties of commodities networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 74(2), pages 243-249, March.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Vecchiato, Riccardo, 2012. "Environmental uncertainty, foresight and strategic decision making: An integrated study," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 436-447.
- Francis X. Diebold, 2015.
"Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," PIER Working Paper Archive 12-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," NBER Working Papers 18391, National Bureau of Economic Research, Inc.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
- Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
- J. Paul Elhorst, 2022. "The dynamic general nesting spatial econometric model for spatial panels with common factors: Further raising the bar," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 42(3), pages 249-267, December.
- Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
- Christoph Bergmeir, 2023. "Common Pitfalls and Better Practices in Forecast Evaluation for Data Scientists," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 70, pages 5-12, Q3.
- Afees A. Salisu & Ahamuefula E. Ogbonna & Idris Adediran, 2021. "Stock‐induced Google trends and the predictability of sectoral stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 327-345, March.
- Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
- Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
- Zhao, Lu-Tao & Zheng, Zhi-Yi & Wei, Yi-Ming, 2023. "Forecasting oil inventory changes with Google trends: A hybrid wavelet decomposer and ARDL-SVR ensemble model," Energy Economics, Elsevier, vol. 120(C).
- Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
- Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Massimo Guidolin & Manuela Pedio, 2022. "Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns," Forecasting, MDPI, vol. 4(1), pages 1-32, February.
- Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
- Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
- Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023.
"Commodity futures return predictability and intertemporal asset pricing,"
Journal of Commodity Markets, Elsevier, vol. 31(C).
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2020. "Commodity Futures Return Predictability and Intertemporal Asset Pricing," Working Papers 202011, Geary Institute, University College Dublin.
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
- Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021.
"Forecasting stock returns with large dimensional factor models,"
Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
- Alessandro Giovannelli & Daniele Massacci & Stefano Soccorsi, 2020. "Forecasting Stock Returns with Large Dimensional Factor Models," Working Papers 305661169, Lancaster University Management School, Economics Department.
- Haase, Felix & Neuenkirch, Matthias, 2023.
"Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
- Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Working Paper Series 2020-03, University of Trier, Research Group Quantitative Finance and Risk Analysis.
- Felix Haase & Matthias Neuenkirch, 2021. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," CESifo Working Paper Series 8828, CESifo.
- Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
- Buncic, Daniel & Tischhauser, Martin, 2017.
"Macroeconomic factors and equity premium predictability,"
International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
- Buncic, Daniel & Tischhauser, Martin, 2015. "Macroeconomic Factors and Equity Premium Predictability," Economics Working Paper Series 1522, University of St. Gallen, School of Economics and Political Science.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
- Gang Chu & John W. Goodell & Dehua Shen & Yongjie Zhang, 2022. "Machine learning to establish proxies for investor attention: evidence of improved stock-return prediction," Annals of Operations Research, Springer, vol. 318(1), pages 103-128, November.
- Liu, Wenwen & Zhao, Peng & Luo, Ziyang & Tang, Miaomiao, 2024. "The dynamic impact of network attention on natural resources prices in pre-and post-Russian-Ukrainian war," Resources Policy, Elsevier, vol. 97(C).
- Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
- Fernández-Avilés, Gema & Mattera, Raffaele & Scepi, Germana, 2024. "Factor-Augmented Autoregressive Neural Network to forecast NOx in the city of Madrid," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024.
"Search and Predictability of Prices in the Housing Market,"
Management Science, INFORMS, vol. 70(1), pages 415-438, January.
- Timmermann, Allan & Møller, Stig & Pedersen, Thomas & Schütte, Erik Christian Montes, 2021. "Search and Predictability of Prices in the Housing Market," CEPR Discussion Papers 15875, C.E.P.R. Discussion Papers.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- repec:ipg:wpaper:19 is not listed on IDEAS
- Yoshimasa Uematsu & Takashi Yamagata, 2019.
"Estimation of Weak Factor Models,"
DSSR Discussion Papers
96, Graduate School of Economics and Management, Tohoku University.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
More about this item
Keywords
Dynamic network model; Google Trends; Factor model; Prediction; Principal components; Commodity returns;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002222. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.