IDEAS home Printed from https://ideas.repec.org/a/spr/apjors/v8y2024i3d10.1007_s41685-024-00344-8.html
   My bibliography  Save this article

Forecasting of Indian and foreign tourist arrivals to Himachal Pradesh using Decomposition, Box–Jenkins, and Holt–Winters exponential smoothing methods

Author

Listed:
  • Keerti Manisha

    (National Institute of Technology Hamirpur
    National Institute of Technology Tiruchirappalli)

  • Inderpal Singh

    (National Institute of Technology Hamirpur)

Abstract

Himachal Pradesh offers many tourist experiences to Indian and foreign visitors. The mountainous state experiences a high degree of tourism seasonality, interrupting the efficient operation of the tourism infrastructure. Fundamental requirements for tourism planning are accurate projections of tourist demands. However, estimating future demands becomes challenging because of the high degree of seasonality. The compound and annual growth rate methods are used in state-level tourism research to forecast future growth. Since these models cannot manage seasonality and trends in data series, they inaccurately predict future demand. In this context, forecasting models such as the Decomposition, Box–Jenkins, and Holt–Winters exponential smoothing methods were used to forecast the seasonal tourism demands in the study area. The dataset utilized for the analysis was the monthly Indian and foreign tourist arrivals from 2008 to 2018. Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Theil’s U1 coefficients validated that the forecast models produced accurate results. The Box–Jenkins model accurately forecasted the tourist arrivals (2019 to 2031) as reflected by the lowest error metrics (Indian: RMSE 36833.8, MAPE 3.0, Theil's U1 0.023; Foreign: RMSE 6907.59, MAPE 15.51, Theil's U1 0.10). This approach outperformed the traditional seasonal data series forecasting techniques and contributed to the literature on univariate tourist demand forecasting for hilly areas experiencing a high degree of seasonality. Estimating maximum tourist arrivals is crucial in long-term strategic planning for tourism expansion to withstand maximum loads and ensure efficient business flow, higher investment, enhanced economic growth, and environmental protection in the state. This study is a pioneer in examining tourism demands for stakeholders, tourism operators, and planners to plan the fluctuating tourism in Himachal Pradesh while adhering to sustainability principles. Furthermore, it provides inputs for effective planning and policy formulations specific to the tourism industry based on future demand assessments.

Suggested Citation

  • Keerti Manisha & Inderpal Singh, 2024. "Forecasting of Indian and foreign tourist arrivals to Himachal Pradesh using Decomposition, Box–Jenkins, and Holt–Winters exponential smoothing methods," Asia-Pacific Journal of Regional Science, Springer, vol. 8(3), pages 879-909, September.
  • Handle: RePEc:spr:apjors:v:8:y:2024:i:3:d:10.1007_s41685-024-00344-8
    DOI: 10.1007/s41685-024-00344-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41685-024-00344-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41685-024-00344-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Serena Vergori, 2012. "Forecasting Tourism Demand: The Role of Seasonality," Tourism Economics, , vol. 18(5), pages 915-930, October.
    2. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
    3. Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
    4. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
    5. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
    6. Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
    7. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    8. Shujie Shen & Gang Li & Haiyan Song, 2009. "Effect of Seasonality Treatment on the Forecasting Performance of Tourism Demand Models," Tourism Economics, , vol. 15(4), pages 693-708, December.
    9. S.C. Thushara & Jen-Je Su & Jayatilleke S. Bandara, 2019. "Forecasting international tourist arrivals in formulating tourism strategies and planning: The case of Sri Lanka," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1699884-169, January.
    10. Niematallah Elamin & Mototsugu Fukushige, 2018. "Forecasting extreme seasonal tourism demand: the case of Rishiri Island in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 279-296, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    2. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    3. Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
    4. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    5. Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
    6. Anna Serena Vergori, 2017. "Patterns of seasonality and tourism demand forecasting," Tourism Economics, , vol. 23(5), pages 1011-1027, August.
    7. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    8. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
    9. Lengyel, Attila, 2016. "Tourism, meditation, sustainability," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 10(1), pages 1-11, March.
    10. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
    11. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    12. repec:ptu:bdpart:r201613 is not listed on IDEAS
    13. Anyu Liu & Laura Vici & Vicente Ramos & Sauveur Giannoni & Adam Blake, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team," Post-Print hal-04653783, HAL.
    14. Liu, Anyu & Vici, Laura & Ramos, Vicente & Giannoni, Sauveur & Blake, Adam, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team," Annals of Tourism Research, Elsevier, vol. 88(C).
    15. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    16. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    17. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    18. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    19. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    20. Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    21. António Rua & Carlos Melo Gouveia & Nuno Lourenço, 2020. "Forecasting tourism with targeted predictors in a data-rich environment," Working Papers w202005, Banco de Portugal, Economics and Research Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:apjors:v:8:y:2024:i:3:d:10.1007_s41685-024-00344-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.