IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p1112-1122.html
   My bibliography  Save this article

Filtering With Heavy Tails

Author

Listed:
  • Andrew Harvey
  • Alessandra Luati

Abstract

An unobserved components model in which the signal is buried in noise that is non-Gaussian may throw up observations that, when judged by the Gaussian yardstick, are outliers. We describe an observation-driven model, based on a conditional Student's t -distribution, which is tractable and retains some of the desirable features of the linear Gaussian model. Letting the dynamics be driven by the score of the conditional distribution leads to a specification that is not only easy to implement, but which also facilitates the development of a comprehensive and relatively straightforward theory for the asymptotic distribution of the maximum likelihood estimator. The methods are illustrated with an application to rail travel in the United Kingdom. The final part of the article shows how the model may be extended to include explanatory variables.

Suggested Citation

  • Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1112-1122
    DOI: 10.1080/01621459.2014.887011
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.887011
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.887011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alysha M De Livera & Rob J Hyndman, 2009. "Forecasting time series with complex seasonal patterns using exponential smoothing," Monash Econometrics and Business Statistics Working Papers 15/09, Monash University, Department of Econometrics and Business Statistics.
    2. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    3. Harvey, A., 2010. "Exponential Conditional Volatility Models," Cambridge Working Papers in Economics 1040, Faculty of Economics, University of Cambridge.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    5. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    8. Aurore Delaigle & Peter Hall & Jiashun Jin, 2011. "Robustness and accuracy of methods for high dimensional data analysis based on Student's t‐statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 283-301, June.
    9. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    2. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    3. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    4. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
    5. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
    6. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    7. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    8. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
    9. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    10. Hafner, Christian M. & Wang, Linqi, 2023. "A dynamic conditional score model for the log correlation matrix," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    12. Lucas, André & Opschoor, Anne & Schaumburg, Julia, 2016. "Accounting for missing values in score-driven time-varying parameter models," Economics Letters, Elsevier, vol. 148(C), pages 96-98.
    13. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    14. Fernanda Maria Müller & Fábio M Bayer, 2017. "Improved two-component tests in Beta-Skew-t-EGARCH models," Economics Bulletin, AccessEcon, vol. 37(4), pages 2364-2373.
    15. Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
    16. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    17. M. Caivano & A. Harvey, 2013. "Two EGARCH models and one fat tail," Cambridge Working Papers in Economics 1326, Faculty of Economics, University of Cambridge.
    18. Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
    19. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    20. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1112-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.