IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v94y2020icp1-8.html
   My bibliography  Save this article

A more meaningful parameterization of the Lee–Carter model

Author

Listed:
  • de Jong, Piet
  • Tickle, Leonie
  • Xu, Jianhui

Abstract

A new Lee–Carter model parameterization is introduced with two advantages. First, the Lee–Carter parameters are normalized such that they have a direct and intuitive interpretation, comparable across populations. Second, the model is stated in terms of the “needed-exposure” (NE). The NE is the number required in order to get one expected death and is closely related to the “needed-to-treat” measure used to communicate risks and benefits of medical treatments. In the new parameterization, time parameters are directly interpretable as an overall across-age NE. Age parameters are interpretable as age-specific elasticities: percentage changes in the NE at a particular age in response to a percent change in the overall NE. A similar approach can be used to confer interpretability on parameters of other mortality models.

Suggested Citation

  • de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
  • Handle: RePEc:eee:insuma:v:94:y:2020:i:c:p:1-8
    DOI: 10.1016/j.insmatheco.2020.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackie Li, 2013. "A Poisson common factor model for projecting mortality and life expectancy jointly for females and males," Population Studies, Taylor & Francis Journals, vol. 67(1), pages 111-126, March.
    2. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    3. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    4. Fung, Man Chung & Peters, Gareth W. & Shevchenko, Pavel V., 2017. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 343-389, September.
    5. Kunreuther, Howard & Novemsky, Nathan & Kahneman, Daniel, 2001. "Making Low Probabilities Useful," Journal of Risk and Uncertainty, Springer, vol. 23(2), pages 103-120, September.
    6. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    7. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    8. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    9. J. Pollard, 1988. "On the decomposition of changes in expectation of life and differentials in life expectancy," Demography, Springer;Population Association of America (PAA), vol. 25(2), pages 265-276, May.
    10. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    11. Shripad Tuljapurkar & Nan Li & Carl Boe, 2000. "A universal pattern of mortality decline in the G7 countries," Nature, Nature, vol. 405(6788), pages 789-792, June.
    12. Fanny Janssen & Leo Wissen & Anton Kunst, 2013. "Including the Smoking Epidemic in Internationally Coherent Mortality Projections," Demography, Springer;Population Association of America (PAA), vol. 50(4), pages 1341-1362, August.
    13. Carlos Wong-Fupuy & Steven Haberman, 2004. "Projecting Mortality Trends," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 56-83.
    14. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    15. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    16. Robert Schoen, 1970. "The geometric mean of the age-specific death rates as a summary index of mortality," Demography, Springer;Population Association of America (PAA), vol. 7(3), pages 317-324, August.
    17. Li, Jackie & Li, Johnny Siu-Hang & Tan, Chong It & Tickle, Leonie, 2019. "Assessing basis risk in index-based longevity swap transactions," Annals of Actuarial Science, Cambridge University Press, vol. 13(1), pages 166-197, March.
    18. Colin F. Camerer & Howard Kunreuther, 1989. "Decision processes for low probability events: Policy implications," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 8(4), pages 565-592.
    19. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    20. Rui Zhou & Yujiao Wang & Kai Kaufhold & Johnny Li & Ken Tan, 2014. "Modeling Period Effects in Multi-Population Mortality Models: Applications to Solvency II," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 150-167.
    21. Yinglu Deng & Patrick L. Brockett & Richard D. MacMinn, 2012. "Longevity/Mortality Risk Modeling and Securities Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(3), pages 697-721, September.
    22. Benjamin Seligman & Gabi Greenberg & Shripad Tuljapurkar, 2016. "Convergence in male and female life expectancy: Direction, age pattern, and causes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(38), pages 1063-1074.
    23. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    24. Qing Liu & Chen Ling & Liang Peng, 2019. "Statistical Inference for Lee-Carter Mortality Model and Corresponding Forecasts," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(3), pages 335-363, July.
    25. Stone, Eric R. & Yates, J. Frank & Parker, Andrew M., 1994. "Risk Communication: Absolute versus Relative Expressions of Low-Probability Risks," Organizational Behavior and Human Decision Processes, Elsevier, vol. 60(3), pages 387-408, December.
    26. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    27. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    28. Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
    29. Neil D. Weinstein & Kathryn Kolb & Bernard D. Goldstein, 1996. "Using Time Intervals Between Expected Events to Communicate Risk Magnitudes," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 305-308, June.
    30. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    5. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    6. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    7. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    8. Jackie Li & Leonie Tickle & Nick Parr, 2016. "A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes," Journal of Population Research, Springer, vol. 33(4), pages 333-360, December.
    9. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    10. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    11. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    12. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    13. Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
    14. Snorre Jallbjørn & Søren Fiig Jarner, 2022. "Sex Differential Dynamics in Coherent Mortality Models," Forecasting, MDPI, vol. 4(4), pages 1-26, September.
    15. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    16. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    17. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    18. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    19. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    20. Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.

    More about this item

    Keywords

    Mortality; Lee–Carter; Needed-exposure; Age–response; Age-specific elasticities;
    All these keywords.

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:94:y:2020:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.