IMA(1,1) as a new benchmark for forecast evaluation
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Philip Hans Franses, 2020. "IMA(1,1) as a new benchmark for forecast evaluation," Applied Economics Letters, Taylor & Francis Journals, vol. 27(17), pages 1419-1423, October.
References listed on IDEAS
- Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
- Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
- Hyndman, Rob J. & Billah, Baki, 2003.
"Unmasking the Theta method,"
International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
- Hyndman, R.J. & Billah, B., 2001. "Unmasking the Theta Method," Monash Econometrics and Business Statistics Working Papers 5/01, Monash University, Department of Econometrics and Business Statistics.
- Rossana, Robert J & Seater, John J, 1995.
"Temporal Aggregation and Economic Time Series,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 441-451, October.
- John J. Seater & Robert J. Rossana, "undated". "Temporal Aggregation and Economic Time Series," Working Paper Series 19, North Carolina State University, Department of Economics.
- Andrew Harvey & Siem Jan Koopman, 2000.
"Signal extraction and the formulation of unobserved components models,"
Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
- Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Other publications TiSEM 44688527-92c9-4c46-ac53-f, Tilburg University, School of Economics and Management.
- Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Discussion Paper 1999-44, Tilburg University, Center for Economic Research.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014.
"Time Series Models for Business and Economic Forecasting,"
Cambridge Books,
Cambridge University Press, number 9780521520911, October.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, October.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
- Assimakopoulos, V. & Nikolopoulos, K., 2000. "The theta model: a decomposition approach to forecasting," International Journal of Forecasting, Elsevier, vol. 16(4), pages 521-530.
- Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Heidorn, Thomas & Schäfer, Niklas, 2020. "Euro-Benchmarkreform - Neue Referenzzinssätze in der Eurozone," Frankfurt School - Working Paper Series 228, Frankfurt School of Finance and Management.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022.
"Fractional integration and cointegration,"
Papers
2211.10235, arXiv.org.
- Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
- Jose Maria Fernandez-Crehuet & Luis Alberiko Gil-Alana & Cristina Martí Barco, 2020. "Unemployment and Fertility: A Long Run Relationship," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(3), pages 1177-1196, December.
- Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
- Luis A. Gil-Alana & Antonio Moreno & Seonghoon Cho, 2012.
"The Deaton paradox in a long memory context with structural breaks,"
Applied Economics, Taylor & Francis Journals, vol. 44(25), pages 3309-3322, September.
- Luis A. Gil-Alana & Antonio Moreno & Seonghoon Cho, 2009. "The Deaton paradox in a long memory context with structural breaks," Faculty Working Papers 03/09, School of Economics and Business Administration, University of Navarra.
- Luis Alberiko Gil-Alana & Antonio Moreno & Seonghoon Cho, 2011. "The Deaton paradox in a long memory context with structural breaks," Post-Print hal-00711450, HAL.
- Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
- Dean W. Wichern & Benito E. Flores, 2005. "Evaluating forecasts: a look at aggregate bias and accuracy measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 433-451.
- Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013.
"Nelson–Plosser revisited: The ACF approach,"
Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
- Karim Abadir & Giovanni Caggiano & Gabriel Talmain, 2005. "Nelson-Plosser Revisited: the ACF Approach," Working Papers 2005_7, Business School - Economics, University of Glasgow.
- Karim M. Abadir & Gabriel Talmain & Giovanni Caggiano, 2008. "Nelson-Plosser revisited: the ACF approach," Working Paper series 18_08, Rimini Centre for Economic Analysis.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2014.
"When long memory meets the Kalman filter: A comparative study,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
- Stefano Grassi & Paolo Santucci de Magistris, 2011. "When Long Memory Meets the Kalman Filter: A Comparative Study," CREATES Research Papers 2011-14, Department of Economics and Business Economics, Aarhus University.
- Guglielmo Caporale & Luis Gil-Alana, 2013.
"Long memory in US real output per capita,"
Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2009. "Long Memory in US Real Output per Capita," CESifo Working Paper Series 2671, CESifo.
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2009. "Long Memory in US Real Output per Capita," Discussion Papers of DIW Berlin 891, DIW Berlin, German Institute for Economic Research.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
More about this item
Keywords
One-step-ahead forecasts; Benchmark model;JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2019-08-26 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:118657. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.