IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v72y2010i5p545-607.html
   My bibliography  Save this article

Maximum likelihood estimation of a multi‐dimensional log‐concave density

Author

Listed:
  • Madeleine Cule
  • Richard Samworth
  • Michael Stewart

Abstract

Summary. Let X1,…,Xn be independent and identically distributed random vectors with a (Lebesgue) density f. We first prove that, with probability 1, there is a unique log‐concave maximum likelihood estimator of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non‐constructive, we can reformulate the issue of computing in terms of a non‐differentiable convex optimization problem, and thus combine techniques of computational geometry with Shor's r‐algorithm to produce a sequence that converges to . An R version of the algorithm is available in the package LogConcDEAD—log‐concave density estimation in arbitrary dimensions. We demonstrate that the estimator has attractive theoretical properties both when the true density is log‐concave and when this model is misspecified. For the moderate or large sample sizes in our simulations, is shown to have smaller mean integrated squared error compared with kernel‐based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in practice. We also present a real data clustering example, which shows that our methodology can be used in conjunction with the expectation–maximization algorithm to fit finite mixtures of log‐concave densities.

Suggested Citation

  • Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
  • Handle: RePEc:bla:jorssb:v:72:y:2010:i:5:p:545-607
    DOI: 10.1111/j.1467-9868.2010.00753.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2010.00753.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2010.00753.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Bagnoli & Ted Bergstrom, 2006. "Log-concave probability and its applications," Studies in Economic Theory, in: Charalambos D. Aliprantis & Rosa L. Matzkin & Daniel L. McFadden & James C. Moore & Nicholas C. Yann (ed.), Rationality and Equilibrium, pages 217-241, Springer.
    2. Hajo Holzmann & Axel Munk & Tilmann Gneiting, 2006. "Identifiability of Finite Mixtures of Elliptical Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 753-763, December.
    3. Cule, Madeleine & Gramacy, Robert B. & Samworth, Richard, 2009. "LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i02).
    4. Piet Groeneboom & Geurt Jongbloed & Jon A. Wellner, 2008. "The Support Reduction Algorithm for Computing Non‐Parametric Function Estimates in Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 385-399, September.
    5. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    6. Schuhmacher, Dominic & Dümbgen, Lutz, 2010. "Consistency of multivariate log-concave density estimators," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 376-380, March.
    7. Duong, Tarn & Hazelton, Martin L., 2005. "Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 417-433, April.
    8. Caplin, Andrew & Nalebuff, Barry, 1991. "Aggregation and Social Choice: A Mean Voter Theorem," Econometrica, Econometric Society, vol. 59(1), pages 1-23, January.
    9. An, Mark Yuying, 1998. "Logconcavity versus Logconvexity: A Complete Characterization," Journal of Economic Theory, Elsevier, vol. 80(2), pages 350-369, June.
    10. Caplin, Andrew & Nalebuff, Barry, 1991. "Aggregation and Imperfect Competition: On the Existence of Equilibrium," Econometrica, Econometric Society, vol. 59(1), pages 25-59, January.
    11. Yong Wang, 2007. "On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198, April.
    12. Peter Hall & Brett Presnell, 1999. "Biased Bootstrap Methods for Reducing the Effects of Contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 661-680.
    13. Chang, George T. & Walther, Guenther, 2007. "Clustering with mixtures of log-concave distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6242-6251, August.
    14. Sain, Stephan R., 2002. "Multivariate locally adaptive density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 165-186, April.
    15. Hazelton, Martin L. & Marshall, Jonathan C., 2009. "Linear boundary kernels for bivariate density estimation," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 999-1003, April.
    16. Carando, Daniel & Fraiman, Ricardo & Groisman, Pablo, 2009. "Nonparametric likelihood based estimation for a multivariate Lipschitz density," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 981-992, May.
    17. Laurent Bordes & Céline Delmas & Pierre Vandekerkhove, 2006. "Semiparametric Estimation of a Two‐component Mixture Model where One Component is known," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 733-752, December.
    18. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadoua Balabdaoui, 2014. "Global convergence of the log-concave MLE when the true distribution is geometric," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 21-59, March.
    2. Yining Chen & Richard J. Samworth, 2016. "Generalized additive and index models with shape constraints," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 729-754, September.
    3. Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.
    4. Ting-Kam Wong, 2015. "Optimization of relative arbitrage," Annals of Finance, Springer, vol. 11(3), pages 345-382, November.
    5. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    6. Feng, Oliver Y. & Chen, Yining & Han, Qiyang & Carroll, Raymond J & Samworth, Richard J., 2022. "Nonparametric, tuning-free estimation of S-shaped functions," LSE Research Online Documents on Economics 111889, London School of Economics and Political Science, LSE Library.
    7. Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.
    8. Battey, Heather & Linton, Oliver, 2014. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 43-67.
    9. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2022. "Randomized geometric tools for anomaly detection in stock markets," Papers 2205.03852, arXiv.org, revised May 2022.
    10. Peter Baxendale & Ting-Kam Leonard Wong, 2019. "Random concave functions," Papers 1910.13668, arXiv.org, revised May 2021.
    11. Stein Olav Skrøvseth & Johan Gustav Bellika & Fred Godtliebsen, 2012. "Causality in Scale Space as an Approach to Change Detection," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-14, December.
    12. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    13. Ting-Kam Leonard Wong, 2014. "Optimization of relative arbitrage," Papers 1407.8300, arXiv.org, revised Nov 2014.
    14. Ryan Cumings-Menon, 2017. "Shape-Constrained Density Estimation via Optimal Transport," Papers 1710.09069, arXiv.org, revised Nov 2018.
    15. Azadbakhsh, Mahdis & Jankowski, Hanna & Gao, Xin, 2014. "Computing confidence intervals for log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 248-264.
    16. Egger, Peter Hannes & Egger, Peter, 2016. "Heterogeneous Effects of Tariff and Nontariff Policy Barriers in General Equilibrium," VfS Annual Conference 2016 (Augsburg): Demographic Change 145675, Verein für Socialpolitik / German Economic Association.
    17. Dümbgen, Lutz & Mösching, Alexandre & Strähl, Christof, 2021. "Active set algorithms for estimating shape-constrained density ratios," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    18. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    19. Schuhmacher Dominic & Hüsler André & Dümbgen Lutz, 2011. "Multivariate log-concave distributions as a nearly parametric model," Statistics & Risk Modeling, De Gruyter, vol. 28(3), pages 277-295, September.
    20. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    21. Fadoua Balabdaoui & Hanna Jankowski & Kaspar Rufibach & Marios Pavlides, 2013. "Asymptotics of the discrete log-concave maximum likelihood estimator and related applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 769-790, September.
    22. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazelton, Martin L., 2011. "Assessing log-concavity of multivariate densities," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 121-125, January.
    2. Simon Cowan, 2007. "The welfare effects of third-degree price discrimination with nonlinear demand functions," RAND Journal of Economics, RAND Corporation, vol. 38(2), pages 419-428, June.
    3. Miravete, Eugenio J., 2011. "Convolution and composition of totally positive random variables in economics," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 479-490.
    4. Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.
    5. Miles Gietzmann & Adam Ostaszewski, 2014. "Why managers with low forecast precision select high disclosure intensity: an equilibrium analysis," Review of Quantitative Finance and Accounting, Springer, vol. 43(1), pages 121-153, July.
    6. Liu, Lin & Wang, X. Henry & Yu, Haojun, 2022. "Sequential search with partial depth," Economics Letters, Elsevier, vol. 216(C).
    7. Christian Ewerhart, 2013. "Regular type distributions in mechanism design and $$\rho $$ -concavity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(3), pages 591-603, August.
    8. Gadat, Sébastien & Panloup, Fabien & Pellegrini, C., 2020. "On the cost of Bayesian posterior mean strategy for log-concave models," TSE Working Papers 20-1155, Toulouse School of Economics (TSE), revised Feb 2022.
    9. Tamás L. Balogh & Christian Ewerhart, 2015. "On the origin of r-concavity and related concepts," ECON - Working Papers 187, Department of Economics - University of Zurich.
    10. Moraga-González, José L. & Sándor, Zsolt & Wildenbeest, Matthijs R., 2014. "Prices, Product Differentiation, And Heterogeneous Search Costs," IESE Research Papers D/1097, IESE Business School.
    11. Leandro Arozamena & Estelle Cantillon, 2004. "Investment Incentives in Procurement Auctions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(1), pages 1-18.
    12. Alexandre de Corniere, 2013. "Search Advertising," Economics Series Working Papers 649, University of Oxford, Department of Economics.
    13. Daisuke Oyama & Yasuhiro Sato & Takatoshi Tabuchi & Jacques-François Thisse, 2009. "On the impact of trade on industrial structures: The role of entry cost heterogeneity," Working Papers halshs-00566786, HAL.
    14. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    15. Schweizer, Nikolaus & Szech, Nora, 2015. "A quantitative version of Myerson regularity," Working Paper Series in Economics 76, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    16. Jacob K. Goeree & Theo Offerman, 2003. "Competitive Bidding in Auctions with Private and Common Values," Economic Journal, Royal Economic Society, vol. 113(489), pages 598-613, July.
    17. Zhou, Jidong, 2021. "Mixed bundling in oligopoly markets," Journal of Economic Theory, Elsevier, vol. 194(C).
    18. Mu, Xiaosheng, 2015. "Log-concavity of a mixture of beta distributions," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 125-130.
    19. Lebrun, Bernard, 2006. "Uniqueness of the equilibrium in first-price auctions," Games and Economic Behavior, Elsevier, vol. 55(1), pages 131-151, April.
    20. Mark J. McCabe & Christopher M. Snyder, 2018. "Open Access as a Crude Solution to a Hold‐Up Problem in the Two‐Sided Market for Academic Journals," Journal of Industrial Economics, Wiley Blackwell, vol. 66(2), pages 301-349, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:72:y:2010:i:5:p:545-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.