IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i5p1575-1594.html
   My bibliography  Save this article

Interpretable corn future price forecasting with multivariate time series

Author

Listed:
  • Binrong Wu
  • Zhongrui Wang
  • Lin Wang

Abstract

Efforts in corn future price forecasting and early warning play a vital role in guiding the high‐quality development of the agricultural economy. However, recent years have witnessed significant fluctuations in global corn future prices due to the impact of COVID‐19 and the escalating risks associated with geopolitical conflicts. Therefore, there is an urgent need for accurate and efficient methods to forecast corn future prices. To address this challenge, a novel and comprehensive framework for explainable corn future price forecasting is designed. This framework takes into account multiple factors contributing to corn price volatility, including supply and demand dynamics, policy adjustments, international market shocks, global geopolitical risks, and investor concerns within the corn market. During the data processing stage, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is utilized to thoroughly explore the volatility characteristics of historical corn future prices. Additionally, a convolutional neural network (CNN) is employed to extract essential forecasting information from corn news data. To enhance interpretability, a novel JADE–TFT interpretable corn future price prediction model is proposed. This model combines adaptive differential evolution with optional external archiving (JADE) to intelligently and efficiently optimize the parameters of the temporal fusion transformers (TFTs). Furthermore, in the empirical study, the introduction of a global geopolitical risk coefficient, Baidu indices such as “corn” and “corn price,” and quantized corn news text features is shown to improve the accuracy of corn future price predictions. The proposed corn future price prediction framework contributes to the healthy development of the global grain futures market, thereby fostering the growth and well‐being of enterprises involved in the grain industry.

Suggested Citation

  • Binrong Wu & Zhongrui Wang & Lin Wang, 2024. "Interpretable corn future price forecasting with multivariate time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1575-1594, August.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1575-1594
    DOI: 10.1002/for.3099
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3099
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    2. Ahumada, H. & Cornejo, M., 2016. "Forecasting food prices: The case of corn, soybeans and wheat," International Journal of Forecasting, Elsevier, vol. 32(3), pages 838-848.
    3. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    4. Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
    5. Agnello, Luca & Castro, Vítor & Hammoudeh, Shawkat & Sousa, Ricardo M., 2020. "Global factors, uncertainty, weather conditions and energy prices: On the drivers of the duration of commodity price cycle phases," Energy Economics, Elsevier, vol. 90(C).
    6. Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
    7. Etienne, Xiaoli L. & Farhangdoost, Sara & Hoffman, Linwood A. & Adam, Brian D., 2023. "Forecasting the U.S. season-average farm price of corn: Derivation of an alternative futures-based forecasting model," Journal of Commodity Markets, Elsevier, vol. 30(C).
    8. Xiaojie Xu, 2019. "Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 155-181, June.
    9. Makkonen, Adam & Vallström, Daniel & Uddin, Gazi Salah & Rahman, Md Lutfur & Haddad, Michel Ferreira Cardia, 2021. "The effect of temperature anomaly and macroeconomic fundamentals on agricultural commodity futures returns," Energy Economics, Elsevier, vol. 100(C).
    10. Xingrui Jiao & Yuping Song & Yang Kong & Xiaolong Tang, 2022. "Volatility forecasting for crude oil based on text information and deep learning PSO‐LSTM model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 933-944, August.
    11. Wang, Jue & Wang, Zhen & Li, Xiang & Zhou, Hao, 2022. "Artificial bee colony-based combination approach to forecasting agricultural commodity prices," International Journal of Forecasting, Elsevier, vol. 38(1), pages 21-34.
    12. Jesus Crespo Cuaresma & Jaroslava Hlouskova & Michael Obersteiner, 2021. "Agricultural commodity price dynamics and their determinants: A comprehensive econometric approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1245-1273, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova & Michael Obersteiner, 2024. "Regime‐dependent commodity price dynamics: A predictive analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2822-2847, November.
    2. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    3. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    4. Zhang, Dongna & Dai, Xingyu & Wang, Qunwei & Lau, Chi Keung Marco, 2023. "Impacts of weather conditions on the US commodity markets systemic interdependence across multi-timescales," Energy Economics, Elsevier, vol. 123(C).
    5. Xiaojie Xu & Yun Zhang, 2022. "Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network," Economics Bulletin, AccessEcon, vol. 42(3), pages 1266-1279.
    6. Xiaojie Xu & Yun Zhang, 2023. "Neural network predictions of the high-frequency CSI300 first distant futures trading volume," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(2), pages 191-207, June.
    7. Du, Xiaoxu & Tang, Zhenpeng & Chen, Kaijie, 2023. "A novel crude oil futures trading strategy based on volume-price time-frequency decomposition with ensemble deep reinforcement learning," Energy, Elsevier, vol. 285(C).
    8. Xiaowen Wang & Ying Ma & Wen Li, 2021. "The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model," SAGE Open, , vol. 11(1), pages 21582440211, March.
    9. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    10. Čermák, Michal & Ligocká, Marie, 2022. "Could Exist a Causality Between the Most Traded Commodities and Futures Commodity Prices in the Agricultural Market?," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(4), December.
    11. Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
    12. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi & Wang, Keying, 2023. "How does green finance drive the decarbonization of the economy? Empirical evidence from China," Renewable Energy, Elsevier, vol. 204(C), pages 671-684.
    13. Zaremba, Adam & Bianchi, Robert J. & Mikutowski, Mateusz, 2021. "Long-run reversal in commodity returns: Insights from seven centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 133(C).
    14. Jesus Crespo Cuaresma & Jaroslava Hlouskova & Michael Obersteiner, 2021. "Agricultural commodity price dynamics and their determinants: A comprehensive econometric approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1245-1273, November.
    15. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    16. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
    18. Tiwari, Aviral Kumar & Trabelsi, Nader & Abakah, Emmanuel Joel Aikins & Nasreen, Samia & Lee, Chien-Chiang, 2023. "An empirical analysis of the dynamic relationship between clean and dirty energy markets," Energy Economics, Elsevier, vol. 124(C).
    19. Zhu, Xuehong & Zhang, Shishi & Ding, Qian, 2024. "Does extreme climate change drive the connectedness among global gold markets? Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 91(C).
    20. Anurag Kulshrestha & Abhishek Yadav & Himanshu Sharma & Shikha Suman, 2024. "A deep learning‐based multivariate decomposition and ensemble framework for container throughput forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2685-2704, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1575-1594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.