Entropy-Based Anomaly Detection in Household Electricity Consumption
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Felipe Leite Coelho da Silva & Kleyton da Costa & Paulo Canas Rodrigues & Rodrigo Salas & Javier Linkolk López-Gonzales, 2022. "Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector," Energies, MDPI, vol. 15(2), pages 1-12, January.
- Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.
- Fatin Samara & Bassam A. Abu-Nabah & Waleed El-Damaty & Mayyada Al Bardan, 2022. "Assessment of the Impact of the Human Coronavirus (COVID-19) Lockdown on the Energy Sector: A Case Study of Sharjah, UAE," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
- Jurado, Sergio & Nebot, Àngela & Mugica, Fransisco & Avellana, Narcís, 2015. "Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques," Energy, Elsevier, vol. 86(C), pages 276-291.
- Yizhen Wang & Ningqing Zhang & Xiong Chen, 2021. "A Short-Term Residential Load Forecasting Model Based on LSTM Recurrent Neural Network Considering Weather Features," Energies, MDPI, vol. 14(10), pages 1-13, May.
- Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Vasileios M. Laitsos & Lefteri H. Tsoukalas, 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Jong-Hyuk Im & Hee-Yong Kwon & Seong-Yun Jeon & Mun-Kyu Lee, 2019. "Privacy-Preserving Electricity Billing System Using Functional Encryption," Energies, MDPI, vol. 12(7), pages 1-15, April.
- Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Simona-Vasilica Oprea & Adela Bâra & Florina Camelia Puican & Ioan Cosmin Radu, 2021. "Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
- Cristina Hora & Florin Ciprian Dan & Gabriel Bendea & Calin Secui, 2022. "Residential Short-Term Load Forecasting during Atypical Consumption Behavior," Energies, MDPI, vol. 15(1), pages 1-15, January.
- Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
- Emilio Ghiani & Marco Galici & Mario Mureddu & Fabrizio Pilo, 2020. "Impact on Electricity Consumption and Market Pricing of Energy and Ancillary Services during Pandemic of COVID-19 in Italy," Energies, MDPI, vol. 13(13), pages 1-19, July.
- Feras Alasali & Khaled Nusair & Lina Alhmoud & Eyad Zarour, 2021. "Impact of the COVID-19 Pandemic on Electricity Demand and Load Forecasting," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
- Aviad Navon & Ram Machlev & David Carmon & Abiodun Emmanuel Onile & Juri Belikov & Yoash Levron, 2021. "Effects of the COVID-19 Pandemic on Energy Systems and Electric Power Grids—A Review of the Challenges Ahead," Energies, MDPI, vol. 14(4), pages 1-14, February.
- Olamide Jogunola & Bamidele Adebisi & Khoa Van Hoang & Yakubu Tsado & Segun I. Popoola & Mohammad Hammoudeh & Raheel Nawaz, 2022. "CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-16, January.
- Yuwen Chen & José-Fernán Martínez & Pedro Castillejo & Lourdes López, 2018. "A Privacy-Preserving Noise Addition Data Aggregation Scheme for Smart Grid," Energies, MDPI, vol. 11(11), pages 1-17, November.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Shuo-Yan Chou & Anindhita Dewabharata & Ferani E. Zulvia & Mochamad Fadil, 2022. "Forecasting Building Energy Consumption Using Ensemble Empirical Mode Decomposition, Wavelet Transformation, and Long Short-Term Memory Algorithms," Energies, MDPI, vol. 15(3), pages 1-35, January.
- Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuping Zou & Rui Wu & Xuesong Tian & Hua Li, 2023. "Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection," Energies, MDPI, vol. 16(7), pages 1-15, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
- Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
- Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
- Burleyson, Casey D. & Rahman, Aowabin & Rice, Jennie S. & Smith, Amanda D. & Voisin, Nathalie, 2021. "Multiscale effects masked the impact of the COVID-19 pandemic on electricity demand in the United States," Applied Energy, Elsevier, vol. 304(C).
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Adedayo Ajayi & Patrick Chi-Kwong Luk & Liyun Lao & Mohammad Farhan Khan, 2023. "Energy Forecasting Model for Ground Movement Operation in Green Airport," Energies, MDPI, vol. 16(13), pages 1-19, June.
- Miriam Steurer & Robert Hill, 2019. "Metrics for Evaluating the Performance of Automated Valuation Models," Graz Economics Papers 2019-02, University of Graz, Department of Economics.
- Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
- Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
- Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Bazzana, Davide & Cohen, Jed J. & Golinucci, Nicolò & Hafner, Manfred & Noussan, Michel & Reichl, Johannes & Rocco, Matteo Vincenzo & Sciullo, Alessandro & Vergalli, Sergio, 2022. "A multi-disciplinary approach to estimate the medium-term impact of COVID-19 on transport and energy: A case study for Italy," Energy, Elsevier, vol. 238(PC).
- Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
More about this item
Keywords
anomaly detection; behavior pattern; entropy; household electricity consumption; load forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1837-:d:762362. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.