IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v37y2019i9d10.1007_s40273-019-00808-2.html
   My bibliography  Save this article

Mapping the PedsQL™ onto the CHU9D: An Assessment of External Validity in a Large Community-Based Sample

Author

Listed:
  • Christine Mpundu-Kaambwa

    (University of South Australia Business School)

  • Gang Chen

    (Monash University)

  • Elisabeth Huynh

    (The Australian National University)

  • Remo Russo

    (Flinders University
    Women’s and Children’s Hospital)

  • Julie Ratcliffe

    (University of South Australia Business School
    Flinders University)

Abstract

Background Mapping algorithms have been indicated as a second-best solution for estimating health state utilities for the calculation of quality-adjusted life-years within cost-utility analysis when no generic preference-based measure is incorporated into the study. However, the predictive performance of these algorithms may be variable and hence it is important to assess their external validity before application in different settings. Objective The aim of this study was to assess the external validity and generalisability of existing mapping algorithms for predicting preference-based Child Health Utility 9D (CHU9D) utilities from non-preference-based Pediatric Quality of Life Inventory (PedsQL) scores among children and adolescents living with or without disabilities or health conditions. Methods Five existing mapping algorithms, three developed using data from an Australian community population and two using data from a UK population with one or more self-reported health conditions, were externally validated on data from the Longitudinal Study of Australian Children (n = 6623). The predictive accuracy of each mapping algorithm was assessed using the mean absolute error (MAE) and the mean squared error (MSE). Results Values for the MAE (0.0741–0.2302) for all validations were within the range of published estimates. In general, across all ages, the algorithms amongst children and adolescents with disabilities/health conditions (Australia MAE: 0.2085–0.2302; UK MAE: 0.0854–0.1162) performed worse relative to those amongst children and adolescents without disabilities/health conditions (Australia MAE: 0.1424–0.1645; UK MAE: 0.0741–0.0931). Conclusions The published mapping algorithms have acceptable predictive accuracy as measured by MAE and MSE. The findings of this study indicate that the choice of the most appropriate mapping algorithm to apply may vary according to the population under consideration.

Suggested Citation

  • Christine Mpundu-Kaambwa & Gang Chen & Elisabeth Huynh & Remo Russo & Julie Ratcliffe, 2019. "Mapping the PedsQL™ onto the CHU9D: An Assessment of External Validity in a Large Community-Based Sample," PharmacoEconomics, Springer, vol. 37(9), pages 1139-1153, September.
  • Handle: RePEc:spr:pharme:v:37:y:2019:i:9:d:10.1007_s40273-019-00808-2
    DOI: 10.1007/s40273-019-00808-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-019-00808-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-019-00808-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Tosin Lambe & Emma Frew & Natalie J. Ives & Rebecca L. Woolley & Carole Cummins & Elizabeth A. Brettell & Emma N. Barsoum & Nicholas J. A. Webb, 2018. "Mapping the Paediatric Quality of Life Inventory (PedsQL™) Generic Core Scales onto the Child Health Utility Index–9 Dimension (CHU-9D) Score for Economic Evaluation in Children," PharmacoEconomics, Springer, vol. 36(4), pages 451-465, April.
    3. Emma Frew & Tosin Lambe, 2018. "Comment on: “Mapping the Paediatric Quality of Life Inventory (PedsQL™) Generic Core Scales Onto the Child Health Utility Index-9 Dimension (CHU-9D) Score for Economic Evaluation in Children”," PharmacoEconomics, Springer, vol. 36(8), pages 1029-1029, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris Sampson;Martina Garau, 2019. "How Should We Measure Quality of Life Impact in Rare Disease? Recent Learnings in Spinal Muscular Atrophy," Briefing 002146, Office of Health Economics.
    2. Asrul Akmal Shafie & Irwinder Kaur Chhabra & Jacqueline Hui Yi Wong & Noor Syahireen Mohammed, 2021. "Mapping PedsQL™ Generic Core Scales to EQ-5D-3L utility scores in transfusion-dependent thalassemia patients," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 735-747, July.
    3. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    4. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    5. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    6. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    7. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    8. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    10. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    11. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    12. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    13. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    14. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    15. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    16. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    17. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    18. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    19. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    20. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
    21. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    22. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:37:y:2019:i:9:d:10.1007_s40273-019-00808-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.