IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v25y2019i3p469-492.html
   My bibliography  Save this article

Tourism forecasting: A review of methodological developments over the last decade

Author

Listed:
  • Eden Xiaoying Jiao

    (University of Surrey, UK)

  • Jason Li Chen

    (University of Surrey, UK)

Abstract

This study reviewed 72 studies in tourism demand forecasting during the period from 2008 to 2017. Forecasting models are reviewed in three categories: econometric, time series and artificial intelligence (AI) models. Econometric and time series models that have already been widely used before 2007 remained their popularity and were more often used as benchmark models for forecasting performance evaluation and comparison with respect to new models. AI models are rapidly developed in the past decade and hybrid AI models are becoming a new trend. And some new trends with regard to the three categories of models have been identified, including mixed frequency, spatial regression and combination and hybrid models. Different combination components and combination techniques have been discussed. Results in different studies proved superiority of combination forecasts over average single forecasts performance.

Suggested Citation

  • Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
  • Handle: RePEc:sae:toueco:v:25:y:2019:i:3:p:469-492
    DOI: 10.1177/1354816618812588
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1354816618812588
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1354816618812588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francesco Capone & Rafael Boix, 2008. "Sources of growth and competitiveness of local tourist production systems: an application to Italy (1991–2001)," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 209-224, March.
    2. Chang-Jui Lin & Hsueh-Fang Chen & Tian-Shyug Lee, 2011. "Forecasting Tourism Demand Using Time Series, Artificial Neural Networks and Multivariate Adaptive Regression Splines:Evidence from Taiwan," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 2(2), pages 14-24, May.
    3. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    4. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    5. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    6. Huang, Xiankai & Zhang, Lifeng & Ding, Yusi, 2017. "The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City," Tourism Management, Elsevier, vol. 58(C), pages 301-306.
    7. Chu, Fong-Lin, 2011. "A piecewise linear approach to modeling and forecasting demand for Macau tourism," Tourism Management, Elsevier, vol. 32(6), pages 1414-1420.
    8. Divino, Jose Angelo & McAleer, Michael, 2010. "Modelling and forecasting daily international mass tourism to Peru," Tourism Management, Elsevier, vol. 31(6), pages 846-854.
    9. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
    10. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    11. Hirashima, Ashley & Jones, James & Bonham, Carl S. & Fuleky, Peter, 2017. "Forecasting in a Mixed Up World: Nowcasting Hawaii Tourism," Annals of Tourism Research, Elsevier, vol. 63(C), pages 191-202.
    12. Marcos álvarez Díaz & Josep Mateu-Sbert, 2011. "Forecasting Daily Air Arrivals in Mallorca Island Using Nearest Neighbour Methods," Tourism Economics, , vol. 17(1), pages 191-208, February.
    13. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869, July.
    14. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    15. Nishaal Gooroochurn & Aoife Hanley, 2005. "Spillover effects in long-haul visitors between two regions," Regional Studies, Taylor & Francis Journals, vol. 39(6), pages 727-738.
    16. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    17. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.
    18. Coshall, John T. & Charlesworth, Richard, 2011. "A management orientated approach to combination forecasting of tourism demand," Tourism Management, Elsevier, vol. 32(4), pages 759-769.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    21. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    22. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    23. Koon Nam Lee, 2011. "Forecasting long-haul tourism demand for Hong Kong using error correction models," Applied Economics, Taylor & Francis Journals, vol. 43(5), pages 527-549.
    24. K.B. Nowman & S. Van Dellen, 2012. "Forecasting Overseas Visitors to the UK Using Continuous Time and Autoregressive Fractional Integrated Moving Average Models with Discrete Data," Tourism Economics, , vol. 18(4), pages 835-844, August.
    25. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    26. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886.
    27. Dr. Murat çuhadar & Iclal Cogurcu & Ceyda Kukrer, 2014. "Modelling and Forecasting Cruise Tourism Demand to Izmir by Different Artificial Neural Network Architectures," International Journal of Business and Social Research, LAR Center Press, vol. 4(3), pages 12-28, March.
    28. Hadavandi, Esmaeil & Ghanbari, Arash & Shahanaghi, Kamran & Abbasian-Naghneh, Salman, 2011. "Tourist arrival forecasting by evolutionary fuzzy systems," Tourism Management, Elsevier, vol. 32(5), pages 1196-1203.
    29. Chan, Chi Kin & Witt, Stephen F. & Lee, Y.C.E. & Song, H., 2010. "Tourism forecast combination using the CUSUM technique," Tourism Management, Elsevier, vol. 31(6), pages 891-897.
    30. Miloš Bigović, 2012. "Demand forecasting within Montenegrin tourism using Box-Jenkins Methodology for seasonal ARIMA Models," Tourism and Hospitality Management, University of Rijeka, Faculty of Tourism and Hospitality Management, vol. 18(1), pages 1-18, May.
    31. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    32. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    33. Brad M. Barber & Terrance Odean, 2001. "The Internet and the Investor," Journal of Economic Perspectives, American Economic Association, vol. 15(1), pages 41-54, Winter.
    34. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    35. Konstantinos Drakos & Ali M. Kutan, 2003. "Regional Effects of Terrorism on Tourism in Three Mediterranean Countries," Journal of Conflict Resolution, Peace Science Society (International), vol. 47(5), pages 621-641, October.
    36. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    37. Shuang Cang, 2011. "A Non-Linear Tourism Demand Forecast Combination Model," Tourism Economics, , vol. 17(1), pages 5-20, February.
    38. Nicholas Apergis & Andrea Mervar & James E. Payne, 2017. "Forecasting disaggregated tourist arrivals in Croatia," Tourism Economics, , vol. 23(1), pages 78-98, February.
    39. Dr. Murat çuhadar & Iclal Cogurcu & Ceyda Kukrer, 2014. "Modelling and Forecasting Cruise Tourism Demand to Izmir by Different Artificial Neural Network Architectures," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 4(3), pages 12-28, March.
    40. Rivera, Roberto, 2016. "A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data," Tourism Management, Elsevier, vol. 57(C), pages 12-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
    2. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    3. Jose I Castillo-Manzano & Mercedes Castro-Nuño & Lourdes Lopez-Valpuesta & à lvaro Zarzoso, 2021. "Quality versus quantity: An assessment of the impact of Michelin-starred restaurants on tourism in Spain," Tourism Economics, , vol. 27(5), pages 1166-1174, August.
    4. Ru-Xin Nie & Chuan Wu & He-Ming Liang, 2024. "Exploring Appropriate Search Engine Data for Interval Tourism Demand Forecasting Responding a Public Crisis in Macao: A Combined Bayesian Model," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    5. El houssin Ouassou & Hafsa Taya, 2022. "Forecasting Regional Tourism Demand in Morocco from Traditional and AI-Based Methods to Ensemble Modeling," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
    6. Jiao, Xiaoying & Li, Gang & Chen, Jason Li, 2020. "Forecasting international tourism demand: a local spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 83(C).
    7. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
    8. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    9. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    10. Lingyu, Tang & Jun, Wang & Chunyu, Zhao, 2021. "Mode decomposition method integrating mode reconstruction, feature extraction, and ELM for tourist arrival forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Seong, Byeongchan & Lee, Kiseop, 2021. "Intervention analysis based on exponential smoothing methods: Applications to 9/11 and COVID-19 effects," Economic Modelling, Elsevier, vol. 98(C), pages 290-301.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
    14. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    15. Jessica Bollenbach & Stefan Neubig & Andreas Hein & Robert Keller & Helmut Krcmar, 2024. "Enabling active visitor management: local, short-term occupancy prediction at a touristic point of interest," Information Technology & Tourism, Springer, vol. 26(3), pages 521-552, September.
    16. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    17. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
    18. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    19. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    20. Cheng-Hong Yang & Borcy Lee & Pey-Huah Jou & Yu-Fang Chung & Yu-Da Lin, 2023. "Analysis and Forecasting of International Airport Traffic Volume," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    21. Wanhai You & Yuming Huang & Chien‐Chiang Lee, 2024. "Forecasting tourist flows in the COVID‐19 era using nonparametric mixed‐frequency VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 473-489, March.
    22. Jaume Rosselló Nadal & María Santana Gallego, 2022. "Gravity models for tourism demand modeling: Empirical review and outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 36(5), pages 1358-1409, December.
    23. Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
    24. Han Liu & Yongjing Wang & Haiyan Song & Ying Liu, 2023. "Measuring tourism demand nowcasting performance using a monotonicity test," Tourism Economics, , vol. 29(5), pages 1302-1327, August.
    25. Ke Xu & Junli Zhang & Junhao Huang & Hongbo Tan & Xiuli Jing & Tianxiang Zheng, 2024. "Forecasting Visitor Arrivals at Tourist Attractions: A Time Series Framework with the N-BEATS for Sustainable Tourism," Sustainability, MDPI, vol. 16(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    2. Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
    3. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    4. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
    5. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    6. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    7. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    8. Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
    9. Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
    10. A Fronzetti Colladon & B Guardabascio & R Innarella, 2021. "Using social network and semantic analysis to analyze online travel forums and forecast tourism demand," Papers 2105.07727, arXiv.org.
    11. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    12. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    13. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
    14. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    15. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    16. Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
    17. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    18. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    19. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:25:y:2019:i:3:p:469-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.